
Alex Salkever, Linux Foundation Research

Foreword by Shuah Khan, Fellow, The Linux Foundation

Exploring the people, practices,
and constraints facing the
world’s most critical open
source software projects

July 2023

Open Source
 Maintainers

mailto:skhan@linuxfoundation.org

Open Source Maintainers

Copyright © 2023 The Linux Foundation | July 2023. This report is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International Public License.

Embrace
automation. While
it does not replace the
human touch, it does
provide key benefits such
as scale and instant
response times.

A mention or
shout-out on social
media or a community
call can encourage new
contributors to tackle
hard problems.

39% of interviewees
feel that open source
software work is
highly valued at their
organization.

Interviewees recognize
that specific behaviors
discourage new
contributors, such as
not responding to pull
requests in a timely
manner.

Concerns about
code vulnerabilities
must be balanced

against critical operational
considerations, such
as recruiting new
contributors.

53% of interviewees
indicate their project has a
formal new contributor
recruitment process.

38% of interviewees
say that they feel a
high degree of
support from their
employers for their
open source work.

75% of interviewees
serve both as project
maintainers and
contributors of code.

Less than 1/3
of interviewees
say their project
has a formal
DEI program.

34% of
interviewees say
their project has a
formal mentorship
program.

Only 35% of
interviewees say their
project has a strong
new contributor
pipeline.

62% of
interviewees are
employed to work
full-time on their
projects.

Contents

Foreword ..4

Executive Summary...5

Introduction.. 7

Methodology...8

Observations on the demographics of
maintainers and contributors...9

Career path of maintainers... 9

Contributor, maintainer, or both?... 9

Working full time or part time on OSS projects...10

Super contributor and maintainer project onboarding experience.....................11

Value maintainers receive from open source maintainership...............................13

Maintainer best practices..14

Contributor experience... 14

Community governance and management... 19

Documentation .. 21

Funding and other forms of support.. 23

Diversity..25

Preventing maintainer burnout ...26

Conclusion... 28

Determine your project attributes.. 28

Create a strategy and road map based on your attributes.. 28

Identify key metrics for your project, and track them regularly............................ 29

Identify best practices for your project.. 29

Acknowledgments..30

About the Author ..30

4OPEN SOURCE MAINTAINERS

Foreword
Open source software is the backbone of our world infrastructure.
From financial services and healthcare, to telecommunications
and the internet—it is no secret that open source runs the world..

It powers smartphones and laptops, communications and data
infrastructure, our logistics systems, and our government. From
Linux and MySQL to thousands of viable projects in everything
from front-end frameworks to databases to container orchestra-
tion and telemetry, open source software is everywhere. We all
know code doesn’t write itself. At the core of every successful open
source project are the maintainers and primary contributors.

From designing and writing the first lines of code to overseeing
and nurturing massive open source communities such as Linux
and Kubernetes, the maintainers and contributors drive innova-
tion, progress, and healthy ecosystems. They set the rules and the
tone—or set up the process that empowers healthy self-gover-
nance and continuity of their communities. Without maintainers
and contributors, open source software would quickly become
outdated and insecure. For critical software projects, the burden is
greater.

A relatively small number of open source projects comprise an
astonishingly high percentage of software in use today. It is imper-
ative that we understand more about these critical projects and
capture the lessons of those who run them. Their lessons can
inform future founders and maintainers of critical projects. And,
by making open source broadly more sustainable, we believe we
can increase the pool of successful open source projects and make
maintainership more fulfilling and less taxing.

Open source always has been and will be about the people
who take the risk and make the projects happen. As a founda-
tion dedicated to the success of open source, we owe it to the
maintainers to make their lives better and to illuminate a better
path forward. We hope this report can contribute to this effort
by recording the wisdom and learnings of some of the most
successful maintainers from some of the most critical projects
and making them available to all.

Sincerely,
Shuah Khan
LF Fellow / Maintainer
The Linux Project

5OPEN SOURCE MAINTAINERS

From operating systems to databases to
programming languages, the world increasingly
relies on open source software (OSS). It has become
the foundation of much of the global technology
infrastructure. Unlike proprietary software, which
engineers construct when working in a closed envi-
ronment for a firm explicitly seeking profits from
code, OSS relies on a web of maintainers who work,
often without pay, in initial project stages to build
software. Research has found that our technology
infrastructure relies heavily on a few hundred
open source projects. These projects represent a
disproportionate percentage of software depen-
dencies. The maintainers of these projects bear
a tremendous burden. Projects they oversee and
steward are responsible for much of the global
economy. Disruptions to these projects can cause
massive problems and outages.

In some cases, these maintainers work alone, with
little or no organizational or financial support for
their projects. Even when maintainers enjoy signifi-
cant organizational and financial support, including
explicit duties as part of their salaries, the job of main-
taining the most important OSS—the job of super
maintainers—remains challenging to quantify and
illuminate. This report seeks to document how main-
tainers become maintainers, their experiences and
observations for growing successful OSS projects,
and their tools and best practices for balancing
requirements to grow a software community and live
a fulfilling and sufficiently remunerative life.

Methodology
For this report, LF Research conducted detailed qual-
itative interviews with 32 super maintainers from
projects our research identified as among the top
200 critical OSS projects. The maintainers came
from a wide variety of employment histories but
shared many sentiments and common experiences.

As projects have grown in scale and complexity,
maintainers face increased demands on their time.
This led to less effort to welcome new contributors.
Early contributors benefited from less competi-
tion and more opportunities to engage with project
founders. Despite concerted efforts to maintain a
positive contributor experience, maintainers fear
it has deteriorated over time. They consistently
highlighted the imperative for continued focus on
fostering a supportive environment for new contrib-
utors. This is especially important for mature
projects where attracting new maintainers is more
challenging and for parts of projects that require
more technical acumen (memory management, to
name one example).

As observed in multiple previous studies by LF
Research, maintainers enjoyed the intrinsic rewards
of working on open source, including a sense of
community and camaraderie, work on cutting-
edge technology, the ability to set their own course
and prioritize their activities, and the sense of
achievement in watching a community take shape.
Maintainers recognized that they benefitted

extrinsically in career trajectory, stature, and
respect in the community and career confidence
that another job would also be available. Many of the
maintainers received their current employment due
to their community work. In some instances, compa-
nies hired maintainers specifically because of their
expertise and ability to influence project dynamics.
However, most maintainers expressed concern that
their own organizations did not sufficiently recog-
nize their efforts.

Growing contributions
Maintainers interviewed collectively supplied a wide
range of best practices and wisdom for fostering
and growing communities, including prioritizing and
making time for personal contributor engagement;
using inclusive language; providing multiple
communication channels for engagement; and
providing clear onboarding resources. Successful
projects further supported first-time contrib-
utors by suggesting suitable bugs or pull requests
(PRs), either through flags in GitHub or in response
to questions floated in community channels.
Maintainers should always seek to identify those
with higher capabilities or levels of persistence and
nurture them to build the next generation of super
maintainers and project leads. Establishing triage
processes for new PRs and organizing team efforts
to handle commits and PRs in a timely fashion
further enhances the contributor experience.

Executive Summary

6OPEN SOURCE MAINTAINERS

Governance and control
All interviewees felt that community governance and
management are crucial for the long-term success
of a project but are often overlooked in the early
stages. Best practices include establishing a code of
conduct and promoting civility both explicitly and
implicitly (through actions and the tone of project
leadership). Distributing power can prevent deci-
sion-making bottlenecks that frustrate contributors
and slow down community innovation. Neutrality in
community management ensures fair treatment of
all contributors and encourages developer partici-
pation from multiple organizations.

Documentation
Not surprisingly, maintainers expressed concern
that their project needed to improve documentation.
Best practices suggested by maintainers included
making sure that project leads demonstrate docu-
mentation is a first-class citizen in a project with
comparable recognition to code contributions; hiring
a documentation coordinator; requiring documen-
tation to be submitted with each code contribution;
and creating formal events or processes around
documentation to make it easier to contribute.

Funding
Earning enough money to live on was a concern
for only one of the interviewees (who also worked
on an unaffiliated smaller project in the JavaScript
community). That said, multiple maintainers expressed
frustration that critical open source projects they main-
tained or knew about languished or did not ship new
versions because of the lack of funding support. (Many
maintainers interviewed maintain multiple projects,
including some that are not part of their employment
responsibilities.) Insufficient funding mechanisms for
smaller and mid-sized critical projects were a key driver
in the decisions of maintainers to seek out full-time
employment at an organization willing to underwrite
their work. Of the handful of independent maintainers
interviewed, all expressed concerns about how to
sustain open source projects that do not have founda-
tions or large corporate funders.

Diversity
Most maintainers struggled to generate a suffi-
ciently diverse set of contributors and project leads.
Roughly half of the maintainers had no explicit
diversity efforts or goals. Only a handful partic-
ipated in diversity programs such as Outreachy.
Maintainers that successfully fostered diversity
made DEI goals top-level project goals with asso-
ciated governance efforts and participated in
diversity programs. Despite best intentions, open
source has a long way to go regarding diversity.

Preventing burnout
Maintainers discussed various strategies and prac-
tices that open source maintainers use to prevent
burnout. These practices include recognizing that
open source work is never finished, designing a life-
style that balances work and personal pursuits,
avoiding taking on unpaid projects that require
excessive administrative work, automating work-
flows to increase efficiency, setting boundaries
with regard to communication and work hours, and
taking breaks when feeling burnt out. Many of these
strategies involve cultivating self-awareness and
being realistic about personal limitations to prevent
burnout while still contributing to open source
projects.

Executive Summary

7OPEN SOURCE MAINTAINERS

Introduction
The health of the OSS ecosystem depends on the quality and
success of a core group of the most active and responsible main-
tainers and contributors. The open source ecosystem and, by
extension, the technology infrastructure of the world is heavily
dependent on a relatively small number of projects numbering
in the hundreds. LF Research has studied and attempted to cate-
gorize the most critical projects in terms of dependencies in
ongoing work with Harvard University in our Census II program
(most recently with “’Vulnerabilities in the Core,’ a Preliminary
Report and Census II of Open Source Software” and “Census II of
Free and Open Source Software—Application Libraries.”) Amidst
the millions of open source projects, a critical group of projects
and their maintainers and contributors occupy an outsized role.
LF Research calls these leaders of the open source realm “super
maintainers” and “super contributors,” who collectively form a
group of "super coders."

The burdens on them are heavy. Millions of users and systems
around the world download the projects they oversee. Security
vulnerabilities in their projects may cause massive global disrup-
tion. Vulnerabilities in their code can “break the Internet.” They
also must balance these concerns against more mundane but
equally critical operational considerations, such as the need

to constantly recruit new contributors, set up proper systems
of governance and adjudication for inter-project disputes, and
achieve greater levels of diversity, all the while ensuring that their
project continues to innovate and iterate with new technology
cycles.

This research is the result of interviews with more than 30 main-
tainers of, and core contributors to, the world's most critical
OSS projects, many of which were among the most widely used
application libraries identified in the Census II report published
by the Linux Foundation in collaboration with the Laboratory of
Innovation Science at Harvard University.

Together, the interviews capture the insight and wisdom of the
people at the helm of some of the most critical open source
projects. Interviewees describe how to effectively start, scale,
manage, and innovate within open source projects and identify
opportunities for open source communities and enterprises alike
to better support them in their important work.

https://www.coreinfrastructure.org/programs/census-program-ii/
https://www.coreinfrastructure.org/programs/census-program-ii/
https://www.linuxfoundation.org/tools/census-ii-of-free-and-open-source-software--application-libraries
https://www.linuxfoundation.org/tools/census-ii-of-free-and-open-source-software--application-libraries

8OPEN SOURCE MAINTAINERS

Methodology
LF Research conducted 32 interviews of roughly one hour with
super coders from critical projects. Interviewees for this study
were contributors to, or maintainers of, a diverse array of software
that occupies different roles and niches in the vast open source
ecosystem. This includes front-end libraries (Babel, Webpack,
React, Storybook); operating systems (Linux); infrastructure
(containerd, Kubernetes); package repositories and managers
(Rust Cargo, npm, RubyGems, Gradle, Apache Maven / Maven
Central); databases and storage (PostgreSQL, Ceph); developer
tooling (LLVM, Git, cURL); DevOps (Salt); lower level languages
(Julia); and data analysis and machine learning frameworks and
applications (PyTorch, NumPy, Jupyter).

LF Research intentionally included projects at various stages of
maturity and age, from a few years to multiple decades, and in size
from a single maintainer to projects with thousands of contrib-
utors and dozens of maintainers. Lastly, LF Research included
projects using multiple languages, including C/C++, Go, Rust,
JavaScript, Java, Node.js, Python, Ruby, Julia, and more. In doing
so, LF Research identified common patterns, challenges, and best
practices based on these three core parameters.

There are millions of OSS programs available for free download,
hosted in multiple locations, including on the leading version
control and programming collaboration tools (GitHub, GitLab,
Bitbucket) as well as on web servers and in other locations. The
data in the Census report provides a limited but important view
into the most widely used OSS. The software projects assessed
by Census II had various organizational structures. Some were
single maintainers with no foundation or funding support. Some
projects were larger and more complex software projects, with
multiple committees and bodies as part of project governance.
A single company wholly controlled some projects, while a large
community of contributors wrote others. The aggregated data
measured the dependency graph and assessed which software
packages the largest group of end users used and was depen-
dent upon. The data was anonymized and modified to prevent
any linkage to the organizations running the applications them-
selves. In some instances, usage data (primarily downloads per
month) was also studied and available through other data sources
that collect and analyze data on OSS usage, such as Libraries.io.
Libraries.io collects usage data from package repositories and
managers, a key nexus of open source dependency data and
application usage.

C
25%

JavaScript
21.4%

C++
14.3%

Python
14.3%

Java10.7%
Go3.6%
Julia3.6%
Ruby3.6%
Rust3.6%

FIGURE 1

LANGUAGES OF PROJECTS SURVEYED

9OPEN SOURCE MAINTAINERS

Observations on the demographics of
maintainers and contributors
The 32 interviews included maintainers of various ages and
from a wide variety of locations. Maintainers hailed from a half
dozen countries. Six of the interviewees were female, and the
remainder were male. All were developers and engineers with
considerable experience. They worked for companies ranging
from large multinationals to small consultancies. One worked
solely on their open source project. Most were working either
at very large or small companies. Large companies represented
included Red Hat, Amazon, Microsoft, IBM, Meta, and VMware.
Few were working at “mid-sized companies.” Two of the inter-
viewees worked at the Linux Foundation. Three of the interviews
focused on previous project work; those interviewees had moved
on from maintainer and contributor roles, but their experience
remains useful and valuable.

Career path of maintainers
Maintainers of and contributors to these critical projects came
from a variety of academic backgrounds. A significant percentage
studied computer science or software engineering in university
as a major or a minor; several worked on the software they would
later become a maintainer of while in school as an undergraduate
or graduate student.

This was particularly true for maintainers and contributors working
on lower-level and more complex projects such as the Linux kernel
and distributions, Git, and databases. Those maintainers also were
more likely to take jobs out of school at large established software
companies, where they took part in open source work as part of a
lab or part of a growing open source practice.

Many of these maintainers initially started in open source through
exposure to and work with the Linux operating system. There was
also a correlation between the language of the project and the
percentage of contributors who studied computer science; projects
written in C-type languages tended to attract university-trained
computer scientists more than projects written in other languages.
Another significant group of maintainers was academics who
began to work on open source to better solve their own computing
problems. Only one of the maintainers LF Research interviewed
with an academic background remains primarily employed as an
academic; most migrate to a role at a technology company or foun-
dation once their project gathers sufficient critical mass.

Contributor, maintainer, or both?
LF Research defines a contributor as someone who writes and
submits code to a project and a maintainer as someone who works
in the management of a project, including code review, triage,

Eng
53.1%

Acad14.3%

Eng—Solo
9.4%

DevOps6.3%
IT3.1%
UX3.1%

NUMBER OF INTERVIEWS = 32

FIGURE 2

PRIOR CAREER ROLES OF MAINTAINERS

10OPEN SOURCE MAINTAINERS

test, security, build and infrastructure, and release management.
A total of 75% of interviewees served both as project maintainers
and contributors of code, with 25% serving only as maintainers.
None were only contributing code, as one would expect when
interviewing maintainers. The percentage of their time spent
working on open source projects varied widely, averaging 70% of
their time. Our interviews covered only one project operating with
just one maintainer; every other project examined had more than
one maintainer helping with the workload.

Over the course of their time working on their project, most of the
interviewees followed a progression path from contributor to core
contributor to maintainer. Inside the larger organizations, main-
tainers tended to juggle multiple roles and tasks. For example,
Brian Granger, a Project Jupyter maintainer, initially wrote much of
the project code. Today he focuses on fundraising, management,
technical architecture design, reviewing code, and improving
the UX practice for Jupyter. Granger, who works at Amazon Web
Services, also continues to be involved in the community gover-
nance of Jupyter as a member of its Executive Council. Shuah Khan
at the Linux Foundation oversees test and QA processes for the
Linux kernel. She also works to improve project documentation
and is actively mentoring 13 contributors as part of her efforts
to increase project diversity. Khan initially started out primarily
contributing expertise and architectural design to the test and QA
infrastructure of the Linux kernel but then progressed to roles that
included more managerial activities.

Working full time or part
time on OSS projects
All but two of the interviewees had full-time employment with
a company that supported investing their time in the project.
Another significant percentage worked at venture-backed
companies of significant scale, including Vercel, Chromatic, and
Oxide Computer. Only one maintainer received support solely
from sponsorships, donors, and other forms of ad hoc project

Yes
62.5%

No
37.5%

Fully Employed on Project

No Project
Experience

Part Time /
Some Experience

Project
Maintainer

Not Paid to Work on Project

FIGURE 3

MAINTAINERS WORKING
FTE ON OSS PROJECTS

FIGURE 4

MAINTAINER ARCHETYPE GRID

11OPEN SOURCE MAINTAINERS

funding. Another was in between jobs but had been employed
steadily working in open source for the past decade, primarily as
an open source evangelist.

The relationship between the interviewee, their employer, and
their project was varied and often fluid. In some instances,
the employee was hired full time to come work on a project
without having worked on the project specifically before. In
some instances, an employee was hired specifically because
of their position in the community and their ability to help the
company understand the project road map and support upstream
contributions.

In some instances, an employee was hired with the understanding
that they would spend part of their time working on a project that
is strategic to their employer. In a handful of the cases covered
here, interviewees worked for a company that employed all the
primary maintainers of a project. In a rare set of instances, the
interviewee was fully employed, but the employer was indifferent
to their work on the project. In two instances, an interviewee
worked for a company that specialized in helping customers by
crafting features for a specific project.

Super contributor and maintainer
project onboarding experience
With few exceptions, interviewees enjoyed a welcoming
onboarding experience when they first became involved in the
project. This is not to say in every instance that it was necessarily
easy or obvious to find a set of first issues to work on. However,
universally, interviewees who were not original founders reported
a positive first experience entering the community.

Nevertheless, multiple interviewees who had been contributors
or maintainers since or near the inception of their projects said
that they doubted their community today would be as welcoming
due to the scale of the mature community, the present demands
on maintainers, and the increased complexity of the project code

Low
24.5%

High
38.8%

Medium
36.7%

FIGURE 5

PERCEIVED DEGREE
OF ORGANIZATIONAL
SUPPORT

“If I step back from the job I have and from

everything else and just ask, ‘Okay, what

could I do that would have the greatest impact

on society, technology, humankind?’ as a

whole, I’d be hard-pressed to find something

better than working on open source.”

—BRIAN GRANGER, CO-CREATOR AND LEAD MAINTAINER, JUPYTER

12OPEN SOURCE MAINTAINERS

and architecture. When he first contributed code to PostgreSQL,
Andres Freund said, “... because the responses were so quick
and in-depth, it was like, ‘Cool! That's way more than review or
whatever I've ever gotten in my work life.’ I don't think that's the
case anymore these days because just the volume has increased
so much that that kind of quick response and in-depth response is
not the norm anymore.”

Several interviewees remarked that their initial contributions,
often error-riddled, would have less likely received a warm
response in the project today. Their same contributions, if
submitted today, would require considerable effort to push their
PRs over the line and get them merged. In addition, early contribu-
tors felt they were able to tackle more substantive problems since
they were so early in a project. Competition for maintainers’ time
was less stiff, so rich engagements with project founders (via email
or in GitHub) were more likely and sustainable. Also, there were
many more areas where contributions were welcomed because
the project community was less mature, and expertise in key
areas of project development remained lightly covered. In at least
one instance, a maintainer had carefully observed community
behavior and picked an area of contribution that was extremely
complex and had few participants precisely to stand out and
improve their chances of acceptance into the community.

The maintainers interviewed recognize specific behaviors that
discourage new contributors:

•	 Maintainers have been unable to respond to PRs in a timely
manner.

•	 Maintainers stopped spending extended time helping new
contributors debug PRs.

•	 Maintainers stopped actively triaging new contributors to
identify potentially valuable talent.

•	 Contributors struggled to find an entry point for
conversations and input.

FIGURE 6

PROJECT HAS FORMAL
MENTORSHIP PROGRAM

FIGURE 8

PERCEIVED STRENGTH
OF NEW CONTRIBUTOR
PIPELINE

Yes
34.4%

No
65.6%

Yes
53.3%

No
46.76%

Strong
34.4%

Kinda
34.4%

No
21.9%

NA
9.4%

FIGURE 7

PROJECT HAS FORMAL NEW
CONTRIBUTOR RECRUITMENT
PROCESS / PLAN

13OPEN SOURCE MAINTAINERS

“Because just the volume (of work and PRs) has increased so
much that that kind of quick response and in-depth response
(which I received) is not the norm anymore, at least in the
PostgreSQL community, I don't even know whether I could
succeed today or whether I would be hooked again like I was
when I started out,” explains Freund, a member of the core
committer team of the project. In other words, contributor expe-
rience tended to degrade, in their opinion, over time. This was
often despite concerted efforts to address and maintain contrib-
utor experience.

Value maintainers receive from
open source maintainership
Maintainers universally expressed gratitude for open source
and their ability to work in a system with open source values.
Specific benefits derived by maintainers for their activities
include both intrinsic and extrinsic values. The intrinsic values
LF Research has commonly seen expressed in previous surveys
of open source maintainers and contributors, such as the FOSS
Contributor Survey Report, include:

•	 A sense of community and camaraderie

•	 The ability to work on cutting-edge technology

•	 The ability to set their own course and prioritize their
activities, the ability to work with a global community of
peers, and the joy of creating something from scratch

•	 A sense of achievement in watching a community take shape
and flight

•	 The chance to work with really smart people

“When I first met some of the people in person in the commu-
nity, I was giving everybody hugs. It was a very emotional moment
actually because we had sort of been so invested and committed
for so many years working on things together,” says one of the lead
maintainers of Julia.

Extrinsic values included access to better employment; the
ability to work for a variety of employers and choose their mode,
location, and style of work; and external status signals such as
association with a noted or trending project. In addition, several
maintainers mentioned that their open source work, while not
directly contributing to their day-to-day work, did contribute to
their attractiveness to employers. Only one of the interviewees
expressed financial concerns over working in open source as a
career choice. Not coincidentally, that maintainer was heading a
project with no clear commercial entity or monetary engine, one
entirely dependent on donations and sponsorships. The majority
of the maintainers expressing funding concerns for their projects
were working on JavaScript projects, an area that has traditionally
struggled to obtain sufficient funding due to the dynamics of the
JavaScript ecosystem and low levels of corporate funding for inde-
pendently maintained JavaScript projects.

“Open source, it is a life-changing experience

for me. Coming from a closed-source world,

I feel like I am in the driver’s seat, I would

say, as opposed to riding as a passenger

in the backseat. I feel like I can control my

career; I have direct control over what I

do and what my contributions are.”

—SHUAH KHAN, MAINTAINER, LINUX KERNEL

https://www.linuxfoundation.org/wp-content/uploads/2020FOSSContributorSurveyReport_121020.pdf
https://www.linuxfoundation.org/wp-content/uploads/2020FOSSContributorSurveyReport_121020.pdf

14OPEN SOURCE MAINTAINERS

Maintainer best practices
As part of each interview, LF Research asked maintainers and
contributors what were the best practices that contributed to the
success of their project. While community health is an inexact
science, most of the communities covered in this research effort
were healthy by the most basic metric—they were shipping new
code and versions.

Several maintainers voiced concerns that their community was
struggling to find fresh contributors and that this challenge could
negatively impact the project down the road. Maintainers all
expressed strong views on how to maintain community health.
The size, language, and life cycle stage of the project impacted
these views.

How each project’s best practices came about varied widely. Most
maintainers created some best practices from personal hands-on
experience and through trial and error. Others were codified in
the community as specific parts of governance and rules. Many
projects had gone through periods of change where a new set of
best practices was adopted to enable smoother community inter-
action, execution, and growth. In hindsight, the projects treated
their own practices as they did code, subjecting them to constant
scrutiny and review for potential ways to improve.

There is no one set of comprehensive best practices that will work in
all cases. However, maintainers and core contributors demonstrated
great creativity in building out personalized and organizational best
practices that met their needs. Here is a breakdown of the best
practices identified as useful and helpful by interviewees. This list
is grouped into specific areas of practice, although in many cases, a
best practice affects multiple areas, including contributor experience;
community governance; documentation; fundraising and in-kind
contribution generation; diversity; and burnout prevention. In the
sections below, LF Research expands on each of them.

Contributor experience
Contributors are the lifeblood of neutral open source projects.
Many of the successful maintainers prioritized contributor expe-
rience very early in the project, working to encourage contributors to
comment, file bugs, and, ultimately, submit suggestions for improve-
ments to code (in the form of PRs). Some maintainers undertook
heroic measures to encourage contributors. For example, Norbert de
Langen, the lead maintainer of the Storybook project, sent a meeting
scheduling link with a request to speak in person to anyone who sent
him an email with a suggestion or question about the project code.
De Langen met with over 200 people using this method during the
first year of the project. He estimates that nearly 20% of those he met
with later became repeat contributors to Storybook.

15OPEN SOURCE MAINTAINERS

Maintainers that build successful projects often go to extensive
lengths to help first-time contributors improve their contribution
and learn how to prepare a code submission, such as checking
the format and syntax of code using automated check systems.
Gareth Greenway, currently a maintainer of the Salt project,
had submitted an error-riddled PR that the lead project creator,
Thomas Hatch, read. The original creator gave Greenway positive
feedback and worked with him to fix the code. Greenaway went on
to submit numerous other PRs and later became a Salt maintainer.

Here is a list of some other common ways that successful main-
tainers build a strong contributor experience.

Respond personally to first-time contributors.

Personally respond to first-time contributors when they start to
engage with the community. This is more viable in early-stage
projects with smaller communities, but many maintainers still
attempt to respond personally consistently. For smaller, more
contained projects, personal response time is less of a challenge.
For example, in Linux toolchains or in projects such as containerd,
which do not require large numbers of contributors and are written
in more challenging software languages such as C++, maintainers
do not see a high volume of inbound messages from potential
contributors or maintainers. (Note: This also indicates challenges in
recruiting new community members and contributors, particularly
for older projects at the later stages of their life cycle).

Set up automated greeting bots and an onboarding guide.

Automation does not replace the human touch, but it does
provide key benefits such as easy scale and instant response
times. Particularly for mid-sized and larger communities, main-
tainers generally set up an automated greeting bot to greet
new community members in Slack or Discord and guide them
toward onboarding resources. Linkerd, Kubernetes, Ansible,
GitHub, and many other organizations use this capability. Some

organizations use bots in GitHub to greet new contributors.
“Jupyter Lab (part of the Project Jupyter) uses a GitHub bot to
welcome new contributors. If we detect you opening an issue
or pull request, we respond, ‘Hey, this is your first time contrib-
uting. Welcome to the project. Here's how you can participate in
the community,’" explains Granger.

Use inclusive language.

This can meaningfully improve partici-
pation for diverse groups of current
and prospective contributors.
Inclusive language is neutral with
respect to race or gender but
also considers regional language
differences and the ability of
non-English speakers to easily
understand project commu-
nications. Inclusive language
can be welcoming, engaging,
and energetic. This is not to say a
project must communicate solely in
an anodyne style but that project leaders
should be cognizant of the communications
requirements for contributors and other project participants. For
example, a project should seek to minimize regional expressions,
such as sports references and local jokes, to simplify commu-
nications. There are a variety of automated analysis tools that
can provide inclusive language suggestions for emails, Slack,
and online documents and pages. Grammarly, the most popular
online grammar-checking tool, now offers suggestions for inclu-
sive and gender-neutral language. Textio is a popular online tool
that screens job listing language for both explicit and implicit bias
and suggests language that is both explicitly and implicitly more
inclusive. Common sense also can go a long way toward making
language more inclusive.

https://www.grammarly.com/blog/gender-neutral-language-lgbtqia-allyship/
https://www.grammarly.com/blog/gender-neutral-language-lgbtqia-allyship/
https://textio.com/

16OPEN SOURCE MAINTAINERS

Create a simple page that aggregates all the

different entry points and communications

channels for a project.

Many projects have multiple means of communication, including
email lists, chat (Slack, Discord, IRC), GitHub repos, project
channels on YouTube, Wikis, and more. A simple way to help new
contributors connect with the community is to make it easy to find
all these channels, as Ceph does with their “get involved” page.

Create an onboarding or “how to contribute”
section in the project documentation or a
markdown file on the project’s GitHub page.

This includes an explanation of how the community works,
links to tutorials and key documentation, and ideally identifies
ways to contribute and participate along with ways to connect
with key community leaders and members. Almost every project
does have an onboarding page somewhere in its documenta-
tion and GitHub. The best practice is to link to them from multiple
locations to ensure new contributors can easily find them. The
more information on this page, the better. For example, Jupyter’s
CONTRIBUTING.MD page on GitHub contains granular detail
down to links to how to do regression tests for any contributions.

Suggest bugs or PRs for first-time contributors
(often called “good first issue” bugs or PRs), or
identify bugs that could use help.

In many projects, contributors are hesitant to dive in and submit a
PR because they do not know whether a bug is “owned” by anyone in
the project. (For example, someone who controls a module may have
a trusted cadre of bug fixers.) This is where labels on bugs for new
contributors come in handy. These first-time bugs can be a creation
of docs or more basic code fixes, but it really depends on the pref-
erences of project leadership. Many projects now have a label for
these items in their GitHub repos. For example, VSCode has a “help

wanted” label to identify bugs that are unclaimed. Storybook.js has
a “good first issue” label that steers contributors to issues that may
be less complex. A key part of using these labels is ensuring that they
always have a backlog. Storybook, for example, at the time of this
writing, has 26 issues under the label. For contributors that do not
know where to start, this is an ideal method to steer them.

Establish criteria or a mechanism to identify
contributors with higher-than-average capabilities.

While all contributors may be valuable, those with suitable skills may
be more valuable because of their comparatively shorter learning
curves. For example, in projects written in C-type languages,
fluency in one C language is a huge benefit. Contributors that
demonstrate technical acumen through a high-quality PR or even
sheer persistence in tackling harder problems can be encour-
aged to take on more complex initial projects or connected with
mentors working on more challenging aspects of a project code
base or sub-systems, such as memory management, compilers, or
networking. Maintainers identified technical acumen primarily by
noting code quality or thinking of an initial PR or in the content of
email conversations with a potential contributor about the project.

“A maintainer’s job is being responsive to the

community and contributors, trying to understand

where they’re coming from and giving them

feedback. A lot of times, some of our major

bugs have been caught or addressed

in time because we’ve been

responsive.”

—NEHA OJHA, Ceph

https://docs.ceph.com/en/quincy/start/get-involved/
https://github.com/jupyterlab/jupyterlab/blob/master/docs/source/developer/contributing.rst
https://github.com/jupyterlab/jupyterlab/blob/master/docs/source/developer/contributing.rst
https://github.com/Microsoft/vscode/issues?q=is%3Aopen+is%3Aissue+label%3A%22help+wanted%22
https://github.com/Microsoft/vscode/issues?q=is%3Aopen+is%3Aissue+label%3A%22help+wanted%22
https://github.com/storybookjs/storybook/issues?q=is%3Aissue+is%3Aopen+label%3A%22good+first+issue%22

17OPEN SOURCE MAINTAINERS

Both underscore the importance of outreach and direct commu-
nication with new contributors, particularly in projects where it is
hard to find contributors to tackle hard problems and project tasks
(memory management, compilers, and security, to name a few
examples). Some projects require knowledge overlaps that can act
as a filter for contributors with potential. For example, NumPy is
primarily written by and for scientists, engineers, and people using
Python for data analysis, but the code for the project is in C. The
NumPy maintainers know that if any scientists who have C coding
skills ask to contribute, they are likely to be strong contributors.

Rather than reject flawed contributions, offer
suggestions on how to improve and start a dialogue.

For some maintainers, a potential contributor who communicates
clearly and logically in their PR or via email passes the sniff test.
"Better than the patch quality was people who submitted some-
thing and explained what they were trying to do. I came back to
them and said, ‘I see what you're trying to do, but X, Y, Z,’ and you
had a good conversation with them,” explains Jeff King, a former
lead maintainer of Git.

Reward efforts to tackle the hardest problems.

Hard problems can become “showstopper” risks and major bottle-
necks for projects. More challenging engineering tasks generally
attract fewer aspirants. This problem tends to grow as projects
mature and institutional knowledge accumulates in a small cadre
of experts. For this reason, project maintainers indicated they
made extraordinary efforts to nurture contributors who show
interest in solving or working on harder problems, even if they
are project newcomers. There are several simple yet meaningful
ways to acknowledge and reward these efforts. A mention in
release notes, a shout-out in social media, and a mention on a
community call are just a few of the zero-cost, low-effort ways to
encourage efforts to tackle hard problems. Maintainers may want
to go further. This could mean sending contributors working on
hard problems special swag, helping them to author blog posts in

public settings and on the project site, and assisting them in lining
up conference presentations about their work, to name a few
examples. Above all, maintainers should work especially hard to
nurture these contributors by ensuring timely responses to ques-
tions, comments, emails, or code submissions. This demonstrates
interest in the scarcest of maintainer commodities—their time.

Strive to lower the bar for contributions.

Some contributors may wish to participate but get frustrated due to
a steep learning curve, lack of documentation, or challenges in using
the technology. This can scare off contributors who may ultimately
become quite valuable and productive. Smart maintainers recog-
nize this problem and set out to address it as part of their core work.

At Ceph, Neha Ojha has long struggled against the perception that
the project is hard to use and get started on. To combat this, one
of her top priorities is “... lowering the bar. We can always lower
the bar for new contributors and new users,” says Ojha. For her,
some of that emphasis has come on documentation. “I emphasize
improving the Ceph documentation because I felt like, if we have
the right documentation in place, the first battle is already won.
Then users can at least get Ceph up and running, and we have
those small wins to keep them engaged.”

Create happy milestones to encourage new contributors
who are showing promise and dedication.

For example, Storybook quietly adds a contributor to the project
team in GitHub after their second PR is merged. The contributor
is notified and is generally delighted. (This also unlocks other
GitHub benefits for them, such as a free Copilot account.) ”People
are surprised, and it makes them really happy,” says de Langen of
Storybook. Other maintainers suggest a simple means of recogni-
tion, such as sending out a special limited-edition release sticker
to all contributors cited on each project release. NumPy adds a “+”
sign next to first-time contributors' names to show special grati-
tude in release notes emails.

18OPEN SOURCE MAINTAINERS

Set up office hours specifically for new contributors.

This time can be used to help guide them through the contribution
process and raise the probability their contribution will be quickly
merged. New contributors also often enjoy mentorship from and
contact with maintainers. Shuah Khan of the Linux kernel mentors
multiple contributors of diverse backgrounds by meeting with

them periodically, answering their questions via email, and
helping them prepare contributions. This is part of her job

in the project. “They will be submitting patches that we
need to consider upstream, so it is better if their work

is mentored to give them a better understanding of
how to land a patch,” explains Khan. “It benefits the

project overall by improving patch quality from new
contributors.”

Establish and follow triage
processes for new PRs.

This may seem obvious. Still, the key is to go
beyond setting up the process and to give owner-
ship of triage to a key project member or group
of members (this can mean rotating members

through stints as the triage master). Most projects
already aspire to responsible triage of new patches

and requests, but often work and life can get in the
way. Without a system to handle triage and support

from project leadership to prioritize it, triage tends to fall
to the bottom of priority lists. Unless triage and first-time

response is aggressively prioritized, it can become an ad hoc
/ best efforts approach. This may turn off contributors because

it does not manage expectations and may result in lengthy delays.
For example, the Salt maintainers overhauled their triage process
and created specific roles and coverage to ensure triage moved
along and followed the same process. “Every new issue that comes
in goes through proper triage these days,” says Pedro Algarvio, a
Salt maintainer, noting this was not always the case.

Don’t be afraid to say no.

New contributors may propose ideas and submit patches that
could have significant impacts on the workings of project code
and subsystems with cascading and unintended consequences.
Strong maintainers strive to respond quickly and explain politely
but firmly why their idea or patch may be problematic and that it
is unlikely to be accepted. In addition, the response (which should
remain public) can help guide later contributors or serve as an
easy way to explain the point to other new contributors in the
future. “No is temporary, but yes is permanent. Be very careful
about what code you agree to add because it has long-term
consequences,” says Laura Abbott, who was one of three prin-
cipal kernel engineers of the Fedora Project (a downstream Linux
distribution) at Red Hat and was a Linux maintainer. Beyond kernel
engineering, Abbott was highly active in the Fedora and broader
Linux community, both as a maintainer and as a mentor of contrib-
utors and wrangler of community concerns. Explains Abbott
further, “Listen to what people are asking, but also just be aware
that it can be a lot harder to remove code than add code, so make
sure that it's added with this in mind.”

Create team efforts to “burst” handle commits and PRs.

The PostgreSQL team regularly organizes “committfests,” where
every meaningful pending code submission and patch receives a
response from the project team. This system works best if there is
a cadence and the activities are repeated several times a year.

Ensure that the right tone is set at the top.

The founding and leadership DNA of open source projects is
critical to further success and community growth. The best project
founders and leaders facilitate and support processes and efforts
to improve governance and grow contributorship. The tone of
inclusion and community health must be set at the top—usually by
the project founder and the small team that starts the project.

“��The very first

pull request I submitted

had close to 500 lint errors.

I think I still hold the record

for the most lint errors of any

contribution to Salt. A lot of open

source projects would just have

told me, ‘This is garbage. Take

a hike.’ Instead, Tom Hatch (the

creator of the Salt project) said,

‘This is great! We have needed

this for a long time. It looks

like you’ve got some lint

errors. Let’s get those fixed

and get this merged.’”

—GARETH GREENAWAY, SALT

19OPEN SOURCE MAINTAINERS

Community governance
and management
Community governance and management are often left out of
consideration in the early stages of a project. This is not surprising.
In the early stages, a project creator is focused on getting to a
minimum viable project and creating a strong software foundation.
When a project is birthed inside an organization, then gover-
nance is often an internal function and focused on internal needs
rather than the longer-term requirements of building a sustainable
community. Any complex project eventually requires codified
governance and a management structure—even if there is a
natural “lead maintainer” overseeing the project (e.g., the creator).

For small projects, explicit governance policies and structure
may not be necessary for day-to-day management but become
essential for adjudicating disputes and for making long-term direc-
tion decisions about a project involving the community. Codified
governance is often overlooked when things are going great but
suddenly becomes critical when the community hits an issue. Here
is a collection of some of the best practices for community gover-
nance and management provided by the interviewees. Some of
these are obvious—such as establishing a code of conduct. Others
are less obvious, more idiomatic, and may not work broadly across
all projects but have been successful in their specific project.

Establish a code of conduct.

This is now common practice for successful open source projects
that wish to maintain a welcoming environment. Examples of
codes of conduct are easy to find. Rarely do open source project
leadership teams and project members object to codes of
conduct. However, they are critical to prevent conflicts and to set a
minimum standard for cordial interactions. In addition, it is often
critical to document the guidelines and processes for dealing with
reported conduct violations, removing bias from decisions, and
dealing with repeat offenders.

Establish prevailing community norms of civility.

Codes of conduct are necessary but are not sufficient on their
own for setting the right tone. Many of the interviewees consis-
tently mentioned that part of why they continued to contribute to
a community—and later agreed to become a maintainer—is the
civility of the community. Experienced maintainers also said that
they politely requested community members to soften their tone
if it appeared that a discussion was getting heated. This was a way
to make a community conversation more welcoming by visibly
encouraging abrasive but well-meaning community members to
use a less abrasive tone in dialogue.

Design yourself out of your job ASAP.

Maintainers discussed how challenging it was to relinquish power
and control over their project emotionally. Most felt a strong sense
of attachment to their projects. However, they recognized the
importance of giving up control to incentivize contributors and
allow them to create and build a more self-sustaining and healthy
community. A handful of maintainers aggressively sought to give
responsibility out to any developers or volunteers who expressed

“I tend to view the changes and ignore who’s actually

behind it. Even if there’s a regular contributor

doing this commit (or proposing a change) or a

complete newbie, I try to view both identically.”

—DANIEL STENBERG, LEAD MAINTAINER, CURL

20OPEN SOURCE MAINTAINERS

interest and could prove basic competence. “From minute one, I
was like, ‘All right, who can I transfer this ownership to? Who can I
give this responsibility to?’” says Norbert de Langren, lead main-
tainer of Storybook, who initially planned to only serve in this
capacity for a single year.

Provide radical transparency.

Maintainers often stated that they tried to push everything
happening in their projects from private to public channels to
achieve 100% transparency. Most intuitively understood that
open source communities expect transparency. For the most part,
private contacts came when private companies wished to submit
code changes and wanted to understand the best way to bring this
about. Maintainers discouraged side-channel discussions such as
this. Radical transparency is especially important for two other
reasons. First, it simplifies succession and continuity, and second,
it enables the entire community to participate in decision-making.

Distribute power and decision-making.

Until 2022, the Jupyter Project used community-wide rough
consensus for making key decisions. While consensus worked well
in the initial stages of the project, as it grew in complexity and
number of participants with over 1,500 contributors and over 100
GitHub repositories, building broad consensus became unman-
ageable. Many parts of Jupyter required specialized knowledge to
understand and make decisions. According to Jupyter co-creator
and maintainer Granger, even sub-projects with 50 or 100 contrib-
utors and maintainers were struggling with consensus. This was
slowing innovation.

As a result, the project leaders struggled to make decisions when
consensus was inadequate. This led to community member
frustrations and complaints, which in turn contributed to the
burnout of project leaders After public discussions and deliber-
ation, Jupyter adopted a modular governance structure with an
Executive Committee, a Software Steering Council, and Working
Groups to parcel out decision-making. “Our new model really
works hard to make sure that we have a good balance of power
checks in place, clear decision making processes, accountability
mechanisms, and that we handle conflicts of interest in a respon-
sible and transparent manner. All of this is to make sure that
companies, individuals, and nonprofit organizations can come
together and work on Jupyter in a neutral, collaborative context,”
explains Granger.

Maintain clear neutrality in community management.

This is particularly critical for projects controlled by a single orga-
nization or company. Experienced maintainers spoke of striving
to maintain a neutral view of all contributors, even to the point of
ignoring the identity of submitters of issues and PRs. Some main-
tainers acknowledged that if a contribution comes from a regular
known for working on a particularly complex area, they may flag it.
But, broadly speaking, they strove to treat all contributors and all

“Any open source projects where there’s a

commercial company that’s supporting the project—

it needs to be one community. It can’t be, you’ve got your

commercial side, and they’re doing their own thing, and

you’ve got your open-source community, and they’re

doing their own thing. That doesn’t work because

you’re defeating the purpose of things being open.”

—GARETH GREENAWAY, SALT

21OPEN SOURCE MAINTAINERS

PRs filed with fresh eyes and on an equal basis. A critical piece of
maintaining neutrality is demonstrating perception and awareness
of what neutrality should look like and how a neutral party should
behave. This entails both putting in the core work of maintaining
a project in a very public manner as well as encouraging project
development that is clearly non-zero-sum, even to the point of
making a project more commercially useful beyond the controlling
company.

Explains Phil Estes of Amazon, a core maintainer of the containerd
runtime engine, “By doing generally helpful community chores,
often referred to as ‘chopping wood and carrying water,’ many times
you end up with credibility and trust that garners leadership in the
project, such that when it's time to say, ‘Hey, project maintainers, we
think this would be a cool way to make the project more observable
or measurable, or this feature would be really valuable for these
specific use cases,’ those discussions get a lot easier when you've
been a critical piece of just keeping the project healthy.“

That said, for many key critical open source
projects, there is often difficulty finding

independent or hobbyist commu-
nity contributors with the time

afforded those working for
major vendors. This is a

reality for projects that
operate at the lowest

layers of infra-
structure, such as

toolchains and
runtime environ-
ments, which
require more
niche skills
and could be
viewed as less
glamorous

than larger projects such as Kubernetes. “It's rare to get someone
who just shows up and says, ‘Oh, I'm here, and I want to work on
containerd. I don't work for a vendor who has container offerings,
but I just love this technology’,” explains Estes.

Use test sets to enforce neutrality.

Another piece of advice from maintainers is to use test sets as
forcing functions for neutrality. “Meta understands the impor-
tance of PyTorch as a project, but another thing that protects us
from conflicted interests between internal customers and external
customers is a good test set. Unit tests that we run in open source,
that we also run internally, provide a very good proxy of what
the community needs versus what the company needs,” explains
Nikita Shulga, a PyTorch core maintainer.

Documentation
Creating a culture of strong documentation is essential at every
stage of open source project development. Documentation enables
smoother onboarding for new contributors and project users alike.
As a project scales, documentation becomes a key tool for commu-
nicating not only the “hows” of project code but also the architec-
tural philosophy behind the engineering approach. While users and
contributors may not read the documentation before contacting
project maintainers and contributors on Slack or in GitHub, the
documentation can simplify support tasks by enabling cut-and-
paste responses to common questions. Incomplete documen-
tation, particularly for commonly requested information, not only
erects barriers to adoption but also generates unnecessary work for
already overworked project maintainers and contributors.

The significant majority of project leaders interviewed for this
study expressed concern that their project needed to improve
documentation. Recruiting and retaining good documentation
contributors is a challenge. A second problem frequently cited is
the wish to overhaul documentation competing against merging

22OPEN SOURCE MAINTAINERS

new code. Additionally, they cited problems or lack of capability of
documentation infrastructure, explains one of the core contribu-
tors and maintainers of the Apache Maven project:

A full reorganization of the whole documentation is exactly the type
of contribution nobody is able to get because there are people who
perhaps could have the knowledge to change everything, but we
would need infrastructure. We would need to rework the contents.
In fact, nobody has the full ability to reorganize absolutely every-
thing. It is as it is. I worked a lot to improve it, and at the moment,
yes, it keeps working as it is.

Projects that have built more advanced and systematic
approaches to documentation undertake a variety of steps to
improve the process and attract more contributors. Here is a
summary of tactics used by successful maintainers to address
documentation challenges.

Make documentation a first-class citizen in the
project hierarchy.

This usually means a set of very visible policies and practices to
demonstrate to the community that documentation is critical.
One approach is for project creators to sit on the documentation
committee and be involved in documentation efforts. Another
is to include documentation goals and metrics as part of overall
reporting efforts for a project. According to Rachel Lee Nabors,
former documentation manager for the React Project at Meta,
project founder and maintainer attitudes toward the docs team is
a good indicator of the longer-term health of the project. She feels
that when project founders and core maintainers take an active
interest in documentation, that increases the likelihood that a
project will continue to grow and attract new users.

Hire a documentation coordinator.

Because it is an activity so largely unloved in the engineering
world, documentation that relies solely on volunteers tends to

struggle and suffer from a lack of resources or high turnover. Most
of the critical projects have a full-time, paid coordinator or docu-
mentation leader or a paid project maintainer who is partly or
solely tasked with documentation.

Either recruit engineers for documentation tasks
or create an educational process to nurture
potential doc writers.

The reality for complex projects is that documentation writers
must have a strong technical understanding of how the code
works. According to Nabors, many of the best documentation
writers have engineering backgrounds. Some engineers actually
enjoy documentation because they enjoy the creative act of
writing.

Require that contributors properly document their
 PRs as part of the merge and build process.

Salt uses a flag in its development process to ensure that all code
submissions and patches have fulfilled documentation require-
ments. “The way Salt is structured, every module, every function
within a module has a docstring. If we see someone contribute a
module that has functions that you would run via Salt that don't
have a docstring, that pull request is not going to get merged,”
says Gareth Greenaway, Salt maintainer. The Linux kernel follows
a similar policy. That said, documentation of code is only a
portion of the required documentation, but it provides a neces-
sary foundation.

Formalize documentation sprints, forums, and
other efforts.

Many organizations employ “doc-sprints,” where engineers take a
break from coding to help write docs. But few make doc sprints a
regular event running on a calendar and even included in overall
project planning.

23OPEN SOURCE MAINTAINERS

Make sure documentation writers receive public
praise for their efforts from lead maintainers.

Mentioning all the documentation contributors in release
notes, shouting out to them in project meetings and online
events, and giving documentation teams their own swag are
just a few of the ways that projects can reward “docstars.”
Calling them out on social media is another low-cost, high-im-
pact way to show appreciation for documentation writers.

Funding and other forms of support
How to support OSS creation is a controversial topic. Most open
source projects do not directly collect revenues for services or
products; many that do are controlled by a single company. It
is important to separate support into two buckets: financial
support of the contributors and maintainers themselves in the
form of salary or sponsorship or business revenues and support
of the project and its organizational requirements, including
operations, marketing, infrastructure, and finances.

Financial support of contributors and maintainers was a concern
and problem for only one of the interviewees of this project.
Among critical open source projects, the majority of maintainers
and core contributors enjoy full-time employment. In most cases,
the employment allows them to spend a portion or all of their
time working on their open source project. All but two of the
interviewees for this project enjoyed sufficient financial support
for their open source activities, primarily in the form of full-time
employment. Two of the interviewees had been or were currently
maintainers of projects that relied primarily on sponsor dollars to
pay maintainers and to cover operating costs. One of the main-
tainers helped found a consultancy that offered consulting and
services focused on the open source project the maintainer
had worked on. Most of the maintainers worked at larger orga-
nizations, where part of their explicit duties was to continue
contributing to or working on the project.

In one instance, a maintainer of critical open source projects that
is a solo project, expressed frustration that one of their projects
required a significant upgrade but that current mechanisms for
funding open source made direct funding to him a challenge.
Equally important, the maintainer noted that he did not even know
how to properly price the upgrade work because he would not
understand the full scope without additional research.

Broadly, LF Research found that successful projects behaved in
a fashion similar to a business or a nonprofit organization. This
meant software development was the first priority but projects
also put considerable ongoing efforts toward fulfilling other opera-
tional requirements, including fundraising, marketing, operational
support, and infrastructure. Numerous organizations and startup
businesses are seeking to address one or more of these areas; the
majority of these efforts focus on increasing sponsorships and

“There’s a class of folks who want to contribute

to documentation, but they just don’t know how

because documentation change also means

a GitHub commit in the Ceph project. There’s

that class that wants to complain about the

documentation but can’t get to the right audience. I

created DocuBetter to bridge that gap and

help both of those types of people

be heard and helped.”

—NEHA OJHA, Ceph

24OPEN SOURCE MAINTAINERS

building funding sources. Fewer organizations focus on other
operational aspects, which are inherently less interesting to

sponsors and other funders. Several respondents noted
that, globally, governments are only starting to recog-

nize the importance of supporting open source
projects with grants to foster the develop-

ment of both technology tools and tooling for
ongoing R&D in biology, materials science

and chemistry, applied physics, and other
relevant disciplines. Interviewees iden-
tified established the following best
practices for funding and support.

Ensure there are regular
sources of project funding
or support.

At the risk of stating the obvious,
the financial viability of a project is
key to a successful project. This can

take various forms, including inside
funding at a company where a project

is solving a problem but is not a core
part of the company product; indirect

funding through academic grants or ongoing
research by academics (multiple key open

source projects launched as academic research
projects, including Ceph, Apache Spark, and others);

direct funding through consortia or foundations; and
direct funding at a company that uses the project as part

of its core product but views a community and open source
as additive and complementary to its business model rather than
purely competitive (Chromatic is an example of this). For solo and
unaffiliated projects, potential sources of funding include sponsor-
ships (GitHub sponsors, LFX, Open Collective), paid support and
dependency models (Tidelift), and one-time foundation or industry

grants (OpenSSF grants to OpenSSL and other key open source
security practices).

For small independent projects, determine if they
require funding and, if so, designate a funding lead
or set up a supporting business.

Of the three small independent project maintainers interviewed,
two had a person working for the project as an employee or in
project leadership responsible for funding. The third did not prior-
itize work on their own open source projects over their day job,
which did not include working on those projects. The two smaller
projects that did have a full-time fundraising maintainer (who also
handled other non-code tasks) were able to pay primary main-
tainers a living wage based on sponsorship and other forms of
support. The lead cURL maintainer dedicated part of their work
hours to helping paying clients solve cURL issues or designing
and coding features clients wished to have included in the cURL
code base. While not a massively scalable business model, it did
generate sufficient revenue to maintain the lead maintainer’s
paycheck and to earn a profit for the maintainer’s employer.

Small independent projects should offload as
much administrative work as possible.

The reality of any open source project is that it is a nonprofit
organization and must check all the boxes required by these orga-
nizations, including handling finance, marketing, infrastructure,
internal IT, and more. Developers working on open source projects
are not COOs and rarely enjoy that part of the job or respon-
sibly managing an open source project. This can be accomplished
through joining foundations, signing up with organizations that
focus on providing operational support to open source projects,
and utilizing free automation tools in platforms such as GitHub to
perform key operational tasks, ranging from the deployment of
new code builds to license selection.

25OPEN SOURCE MAINTAINERS

Diversity
As with other sectors of tech, diversity remains a challenge for the
significant majority of the interviewees. Few of the most critical
open source projects have a significant representation of diverse
maintainers and contributors. Some have virtually none. While
all maintainers interviewed stated they wanted to improve the
diversity of their maintainer and contributor base, many projects
did not have defined diversity strategies, and some pursued
limited or no programs to increase diversity. That said, some
diversity efforts are now commonplace, such as using inclusive
language (see Contributor Experience).

Projects of smaller size and operating in more complex areas of
programming (runtime environments, databases) do not require
large contributor bases. In these smaller projects or teams, it is
often hard to sustain formal efforts to improve diversity; main-
tainers tend to have to juggle multiple priorities. The most pressing
need is shipping code because there is no bench of potential
contributors eager to enter and contribute to the project. This
problem is particularly acute for projects written in older, more
technical languages such as C or Java. “It's an ancient language
for most people. It's a very niche language over there, and it's
mostly just old people working on it,” explains Stenberg, who says
cURL does not have a defined diversity strategy beyond periodic
outreach. “We would love to do better with getting new contributors
and creating more diversity. I have posted on Twitter asking for help.
We have asked the community. I am very open to any suggestions.”

Programs to improve diversity, such as Google Summer of Code and
Outreachy, represent additional responsibility and time commit-
ments for already time-strapped smaller projects, according to
maintainers of these projects. Larger projects and projects affili-
ated with foundations or umbrella groups or larger corporations are
more likely to pursue these outreach programs. Maintainers report
mixed results on the quality of interns and contributions.

More advanced and developed projects had specific diversity

strategies, which included some best practices for building more
diverse project leadership. Some of those best practices included:

Make diversity and inclusion a first-order goal
of a project.

Many critical projects treat diversity and inclusion as a bit of an
afterthought. They lack a standing committee or defined efforts to
build diversity. They may have goals or aspirations but few specific
mechanisms in place to advance diversity. Forward-thinking
project maintainers seek to include diversity and inclusion as a key
goal of the project. For example, Jupyter had significantly elevated
diversity and inclusion efforts to the highest levels of the project
in its recent governance changes. “Our new governance model
has a DEI standing committee that is a key part of the governance
model,” says Granger, one of the creators of the project and a lead
maintainer. “That body has a seat, for example, on the Software
Steering Council that makes decisions about the overall direction
of Jupyter’s software. We are prioritizing diversity and inclusion,
and we haven't always prioritized it at this level.”

Pair mentoring with diversity efforts.

Recruiting contributors who can later become core maintainers is
only half the battle. Most lack experience in open source and can
benefit from active mentoring by maintainers, who can explain
the conventions of the paradigm and help them navigate the
processes and group dynamics. “There are a few challenges in
mentoring this large number, and they require careful planning to
minimize the overhead,” explains Khan of the Linux Project, who
mentors 13 individuals. The office hours are for answering ques-
tions, sharing resources, and demonstrating tools and debugging
techniques as required. For Khan, some of these new contribu-
tors have turned into mentees working on becoming more regular
contributors as part of her work on the LFX Mentorship program
at the Linux Foundation.

26OPEN SOURCE MAINTAINERS

Participate in third-party programs to boost
diversity, such as Outreachy.

There are a handful of programs dedicated to fostering
diversity in technology companies and roles. The most prom-
inent is Outreachy. The Linux Foundation also funds a variety
of diversity scholarships. “I believe in Outreachy. I think it's a
fantastic program for being able to bring in a wide variety of
contributors and other things,” says Abbott. “I'm thrilled to see
that Fedora continues to host interns with Outreachy pretty
much every round they can, and they work in a wide variety
of areas, including not only engineering but also design and
documentation.”

Preventing maintainer burnout
The job of maintaining a vital open source project can be
exhausting and draining. Each interviewee was familiar with
the idea of maintainer burnout. Several maintainers mentioned
that part of burnout comes from the different nature of open
source development. All activity is public and subject to comment
and scrutiny. Projects that rely solely on consensus for deci-
sion-making among participants and leadership often require
additional work and interactions to build consensus and may
accelerate burnout. “I think that there's a certain magic to a
project like Node.js, for example, that does the open model, that
has a truly openly governed steering committee, with an open
governance system,” says Myles Borins, a maintainer of the npm
package repository and Node.js. “But I think to a certain extent,
the ambiguity that exists and the difficulty of really balancing
a consensus model with a lot of people who tend to be conflict
diverse or just want to be nice all the time results in patterns that
are likely to burn folks out.”

Most interviewees had created specific “survival” practices and
strategies. These are not complicated or detailed; most are
common sense. That said, it remains useful to survey these prac-
tices. Some burnout prevention methods included:

Recognize you will never “finish the job.”

Until a project is sunsetted, open source work is never finished.
There will always be PRs and issues waiting to be read and
responded to. Successful maintainers recognize and accept that
their work is never-ending. ”Always just be realistic about what you
personally can't accomplish. It's okay to balance that with other
things. It's okay if you don't complete everything on your to-do list
because open source maintainership can fill an infinite amount of
time if you let it,” explains Abbott.

Accept that open source is always on, and embrace
 the hybrid lifestyle.

Some maintainers that did not experience burnout designed
their lives to work around the flow of open source. They never
really turned off from their projects, but they did take advan-
tage of the flexibility of open source to maintain healthy external
pursuits and spend time with family and friends. Jordan Harband,
maintainer of q̀s,’ for example, elected never to take a vacation

“There’s like a Maslow’s hierarchy thing going on

there. If a maintainer has enough money, they don’t

have to overwork themselves at a different job, and

they don’t have to worry about medical problems

and housing and food and things like that, then I

think that the risks of burnout drop considerably.”

—JORDAN HARBAND, MAINTAINER
OF QS AND es5-shim

27OPEN SOURCE MAINTAINERS

from his open source maintainership and governance work,
but he built a lifestyle that enabled him to spend time with his
partner and children, exercise, and hang out with friends. This is
not for everyone, he notes, but it worked well for him.

Working on open source projects that are rapidly
expanding and require administrative overhead as an
unpaid hobby is not advisable.

This was the general advice from interviewees, the majority of
whom were well paid to work on fast-growing open source projects.
Many worked on open source projects on the side for fun, but none
of those projects required the same levels of administration and
coordination work as their paid open source work. “If this is some-
thing you're not necessarily getting paid to do and you are having to
spend extra hours outside of your working hours doing stuff that’s
not fun, it might be a different story in terms of causing maintainer
burnout,” notes Eli Uriegas, a PyTorch maintainer focused on build
and release tooling.

Constantly look for efficiency hacks to optimize
and automate your workflows.

Super maintainers tended to have bespoke setups to filter project
activities and allow them to focus on the activities and issues that
mattered the most. This may include an aggressive use of email
labels, filters in GitHub, the use of bots to automate workflows,
or other mechanisms to automate processes or enable greater
focus. For some maintainers, such as Tobias Koppers of
Webpack, the best way to do this is only to respond to commu-
nication in only one channel—in his case, inside of GitHub.

Set boundaries and stick to them.

Seasoned maintainers said that they strictly stick
to boundaries on various parameters. For example,
most refuse to engage in Twitter conversations about

the project. Most avoid private email conversations about
their project, wishing to route all discussion into publicly visible
GitHub repos or email listservs. Some maintainers simply ignore
comments or messages outside of the project's GitHub repos.
Additionally, many maintainers set workday boundaries to ensure
they spend time with friends or family. They found that once the
community understood the boundaries, they respected them and
tended to follow them.

Step away if you feel burned out.

Multiple maintainers said that when they begin to feel burnout,
they take a vacation or they take a break from working on their
project. In part, this came with cultivated self-awareness of what
burnout feels like. Most carve out exceptions for critical periods,
such as big version pushes, annual project planning sessions or
online events, and vulnerability remediation efforts.

28OPEN SOURCE MAINTAINERS

Conclusion
Over the course of interviewing 30+ maintainers, LF Research
heard many amazing stories and learned how some of the most
successful projects effectively navigated the myriad challenges
of founding, nurturing, and growing an open source project.
LF Research hopes that these insights enable future genera-
tions of maintainers by documenting patterns and anti-pat-
terns of successful maintainership and project formation and
management. These patterns can provide detailed situational
guidance for many of the common problems faced by open
source projects and their maintainers, as well as ideas on how to
surmount or, even better, preclude these problems from devel-
oping and becoming significant concerns. In the detailed anec-
dotes and suggestions, LF Research aims to provide maintainers
with a basic tool kit for managing their projects as well as ideas for
creating a positive work / life balance. This report only scratches
the surface of an immense topic; in the interest of brevity, many
instructive maintainer stories from our research did not make
it into this paper. That said, from these interviews, LF Research
garnered several specific action items for maintainers that can
improve both their project experience and project code quality.

Determine your project attributes.
Identifying your project attributes from the four categories listed
below is key for creating a maintainer strategy (see TABLE 1). For
example, a small but complex project with high criticality (OpenSSL
is a good example) will likely need to think about both recruiting
highly skilled maintainers and securing funding sources from
corporations or others that rely on the project. And any project
with high criticality benefits from a transparent, community-based
governance process that is designed and implemented with
community input—as early in the project life cycle as possible.
Very large, complex projects that are well-funded, like Kubernetes,
face more of an issue of promoting governance and neutrality.
Medium criticality and moderate complexity projects may struggle

to attract maintainers, so they may do well to seek out a corporate
sponsor. Each combination of attributes comes with its own
recommendations, and there is no one-size-fits-all playbook. That
said, common patterns for specific attribute types can help inform
project strategy and direction. Projects will change and evolve
over time. But even at inception, it is possible to have some idea of
where a project sits with regard to the four attributes.

Create a strategy and road map
based on your attributes.
Recognizing that often open source project management is ad
hoc, and too much structure can become a blocker to produc-
tivity, maintainers will find it useful to create a rough strategy
for the project to help focus activities and guide contributors
and co-maintainers. This strategy document is worth revis-
iting on an annual basis to ensure that activities match attri-
butes. For example, if a project moves toward becoming a critical

TABLE 1

PROJECT ATTRIBUTES FOR CREATING
A RELEVANT MAINTAINER STRATEGY

Size Small Medium Large

Supported No Funding Some Funding Well Funded

Complexity Simple Moderate Complex

Criticality Low Medium High

Lifecycle
Stage

Startup Fast Growth Mature

29OPEN SOURCE MAINTAINERS

dependency in the technology ecosystem, then a project may
need to prioritize additional security activities. If a project is
clearly moving from early stage to fast growth, then the main-
tainers may need to spend more time building onboarding
infrastructure and ramping documentation. Again, there is
no perfect recipe, but a mindful approach to maintainership
regarding attributes and stage can enable focus on what
matters in what is always a noisy process.

Identify key metrics for your
project, and track them regularly.
Project and community health are highly subjective and
dependent on the maintainer and community definition of

success. For example, a front-end framework primarily
backed by a large company may care less about the

pipeline of new contributors versus whether
contributors are constantly submitting

bug reports and suggesting fixes.
And projects that are deep in the

stack and complex to code
for may prefer to measure

existing community perfor-
mance—ship dates, code

quality, etc.—rather than
community growth. That
said, determining the
health indicators for a
project and measuring
them is a key step
for better project
management and
more productive main-
tenance. The CHAOSS

Project offers a laundry
list of community health

metrics that provides a palette to choose from and a great starting
point for maintainers.

Identify best practices for your project.
Open source project formation and maintenance can be over-
whelming. Focus and clarity are critical. The preceding three pieces
of guidance lay the framework and strategy. Putting in place the
tactical steps and processes to impact project health and drive
project improvements in the desired areas works best when
project leadership and the community cooperate to lay out play-
books, best practices, and specific ways of working. It is possible
for projects to lay out detailed guidance across a wide variety
of areas, but for all but the largest and best-resourced projects,
maintainers may want to focus best practices on the areas and
metrics identified as being most impactful. For example, Salt is
now at a scale where it wants higher quality code and less code
overall in the core project, with more functionality moving to
Salt-community-managed extensions. To match this goal, Salt
has made test compliance a mandatory part of the submission
process, versus optional before when the project was more
focused on pulling in new contributors to the core project’s code
base. This is just one small example that highlights how you can
leverage best practices to impact-focused areas of a project.

LF Research hopes that this will create a starting point for conversa-
tions and that, with the help of the growing maintainer community,
LF Research can grow this body of knowledge, heuristics, and
observations to cover a wider range of situations and tasks than
this initial effort. The open source maintainer plays a critical role in
accelerating global innovation and building enterprise, government,
and nonprofit technologies that will solve global challenges and
improve people’s lives. Creating a body of reference knowledge and
a larger pool of competency in this discipline will ultimately make
open source more useful and successful by helping maintainers
and contributors help themselves, building on the shoulders of
what we have learned from those who came before.

https://chaoss.community/
https://chaoss.community/

30OPEN SOURCE MAINTAINERS

Acknowledgments
This report would not have been possible without the help from numerous open source project maintainers who took the time to talk
with us about their work and share their wisdom and insights. We wish to thank:

•	 Rachel Lee Nabors, Brian Granger, Phil Estes (Amazon Web
Services)

•	 Myles Borins, Andres Freund (Github, Microsoft)

•	 Eli Uriegas, Nikita Shulga (Meta)

•	 Shuah Khan (Linux Foundation)

•	 David Edelsohn, Neha Ojha (IBM)

•	 Siddesh Poyarekar, Carlos O’Donnell (Red Hat)

•	 Anil Sharma, Gareth Greenaway, Pedro Algarvio, Megan
Wilhite (VMware)

•	 Norbert de Langen (Chromatic)

•	 Daniel Stenberg (wolfSSL)

•	 Laura Abbott (Oxide Computer)

•	 Tobias Koppers (Vercel)

•	 Joel Orlina, Jason Swank, Hervé Boutemy (Sonatype)

•	 Sterling Greene (Gradle)

•	 Liz Rice (Isovalent)

•	 Ralf Gommers (Quansight)

•	 Henry Zhu

•	 Jordan Harbend

About the Author
Alex Salkever is the co-author of four books on the impact of technology on business and society including, “The Driver in the Driverless
Car” and “Your Happiness Was Hacked.” He worked in senior leadership roles in product and marketing at numerous technology
companies and also served as the technology editor for BusinessWeek. A longtime open source advocate, he has worked with the Linux
Foundation on special projects since 2016.

31OPEN SOURCE MAINTAINERS

Founded in 2021, Linux Foundation Research explores
the growing scale of open source collaboration,
providing insight into emerging technology trends,
best practices, and the global impact of open source
projects. Through leveraging project databases and
networks, and a commitment to best practices in
quantitative and qualitative methodologies, Linux
Foundation Research is creating the go-to library for
open source insights for the benefit of organizations
the world over.

Copyright © 2023 The Linux Foundation

This report is licensed under the Creative Commons

Attribution-NoDerivatives 4.0 International Public

License.

To reference this work, please cite as follows: Alex
Salkever, “Open Source Maintainers: Exploring the
people, practices, and constraints facing the world’s
most critical open source software projects,” foreword
by Shuah Khan, The Linux Foundation, July 2023.

https://www.linuxfoundation.org/research/
https://www.linuxfoundation.org/research/
https://linuxfoundation.org/
https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://www.facebook.com/TheLinuxFoundation
https://twitter.com/linuxfoundation
https://www.linkedin.com/company/the-linux-foundation/mycompany/verification/
https://www.youtube.com/user/TheLinuxFoundation
https://github.com/LF-Engineering

	Foreword
	Executive Summary
	Introduction
	Methodology
	Observations on the demographics of maintainers and contributors
	Career path of maintainers
	Contributor, maintainer, or both?
	Working full time or part time on OSS projects
	Super contributor and maintainer project onboarding experience
	Value maintainers receive from open source maintainership

	Maintainer best practices
	Contributor experience
	Community governance and management
	Documentation
	Funding and other forms of support
	Diversity
	Preventing maintainer burnout

	Conclusion
	Determine your project attributes.
	Create a strategy and road map based on your attributes.
	Identify key metrics for your project, and track them regularly.
	Identify best practices for your project.

	Acknowledgments
	About the Author

