
OPEN
SOURCE
COMPLIANCE
IN THE ENTERPRISE

WITH CONTRIBUTIONS FROM
SHANE COUGHLAN AND KATE STEWART

IBRAHIM HADDAD, PHD

Sponsored by for the Open Compliance Summit 2018

OPEN SOURCE
COMPLIANCE

IN THE ENTERPRISE

2nd Edition

Ibrahim Haddad, PhD
With contributions from

Shane Coughlan and Kate Stewart

Ibrahim Haddad, PhD

Open Source
Compliance

in the Enterprise

2nd Edition

Copyright © 2018 The Linux Foundation. All rights reserved.

This book or any portion thereof may not be reproduced
or used in any manner whatsoever without the express

written permission of the publisher except for the use of brief
quotations in a book review and certain other noncommercial

uses permitted by copyright law.

Printed in the United States of America

First Edition, 2016
Second Edition, 2018

1 Letterman Drive
Building D

Suite D4700
San Francisco CA 94129

6

Open Source Compliance in the Enterprise

Contents
Chapter 1� 16
INTRODUCTION TO OPEN SOURCE COMPLIANCE� 16
A CHANGING BUSINESS ENVIRONMENT � 16
ENTER OPEN SOURCE COMPLIANCE � 19

Benefits of Ensuring Open Source Compliance� 20
FAILURE TO COMPLY� 20

Intellectual Property Failures� 22
License Compliance Problems� 24
Process Failures� 26

LESSONS LEARNED � 27
Ensure Compliance Prior to Product
Shipment/Service Launch� 27
Non-Compliance is Expensive� 28
Relationships Matter� 29
Training is Important � 29

Chapter 2� 30
ESTABLISHING AN OPEN SOURCE MANAGEMENT PROGRAM� 30
OPEN SOURCE COMPLIANCE PROGRAM� 30

Compliance Strategy� 31
Inquiry Response Strategy� 32
Policies and Processes� 32
Compliance Teams� 33
Tools� 34
Web Presence� 35
Education� 36
Automation � 37
Messaging� 37
Industry Initiatives � 37

COMPLIANCE CHALLENGES AND SOLUTIONS� 37
Long-Term Goals versus Short-Term Execution � 39
Communicating Compliance� 40
Establishing a Compliant Software Baseline� 41
Maintaining Compliance� 43
Institutionalization and Sustainability� 44

7

Open Source Compliance in the Enterprise

Chapter 3� 46
ACHIEVING COMPLIANCE: ROLES AND RESPONSIBILITIES� 46
OPEN SOURCE REVIEW BOARD (OSRB)� 50
LEGAL� 53
ENGINEERING AND PRODUCT TEAMS� 54
COMPLIANCE OFFICER� 56
OPEN SOURCE EXECUTIVE COMMITTEE � 58
DOCUMENTATION � 58
LOCALIZATION� 59
SUPPLY CHAIN � 59
IT� 60
CORPORATE DEVELOPMENT� 60

Chapter 4� 62
OPEN SOURCE COMPLIANCE PROCESS� 62
EFFECTIVE COMPLIANCE � 63
ELEMENTS OF AN END-TO-END COMPLIANCE PROCESS� 64

Step 1 – Identification of Open Source � 65
Step 2 – Auditing Source Code � 67
Step 3 – Resolving Issues � 70
Step 4 – Reviews � 70
Step 5 – Approvals � 72
Step 6 – Registration � 73
Step 7 – Notices � 74
Step 8 – Pre-Distribution Verifications � 75
Step 9 – Distribution� 76
Step 10 – Final Verifications � 76

Chapter 5� 78
COMPLIANCE PROCESSES AND POLICIES� 78
POLICY� 78
PROCESS� 79

Source Code Scan� 79
Identification and Resolution� 81
Legal Review � 81
Architecture Review � 82
Final Review� 82

8

Open Source Compliance in the Enterprise

PROCESS STAGES’ INPUTS AND OUTPUTS� 83
Source Code Scan Phase� 84
Identification and Resolution Phase� 85
Legal Review Phase � 85
Architecture Review Phase� 87
Final Approval Phase� 87

DETAILED USAGE PROCESS� 88
INCREMENTAL COMPLIANCE PROCESS� 93
OSRB USAGE FORM� 95

Rules Governing the OSRB Usage Form � 98
AUDITING� 99
SOURCE CODE DISTRIBUTION� 100

Distribution Incentives � 100
Distribution Policy and Process� 101
Distribution Methods and Modes� 103
Distribution Checklists� 104
Pre-Distribution Checklist� 105
Post-Publication Checklist� 106
Written Offer � 107

Chapter 6� 109
RECOMMENDED PRACTICES� 109
COMPLIANCE PROCESS � 109

Identification Phase � 109
Source Code Auditing � 110
Resolving Issues � 112
Architectural Review� 112
Approvals� 113
Notices� 114
Verifications� 114

TOOLS AND AUTOMATION� 116
Source Code Identification Tools � 116
Project Management Tools� 117
Software Bill of Material (BOM) Difference Tools� 117
Linkage Analysis Tool � 118

CHAPTER 7� 120
MANAGING COMPLIANCE INQUIRIES� 120

9

Open Source Compliance in the Enterprise

RESPONDING TO COMPLIANCE INQUIRIES � 121
Acknowledge� 121
Inform� 122
Investigate� 122
Report� 122
Close Inquiry� 122
Rectify� 123
Improve� 123
General Considerations� 123
Enforcement Activities With Varying Motivations� 123

CHAPTER 8� 125
OTHER COMPLIANCE-RELATED PRACTICES� 125
EMPLOYEE APPRAISAL � 125
WEB PORTALS� 126
MESSAGING� 126
TRAINING� 126

Informal Training� 127
Formal Training� 127

SOURCE CODE MODIFICATION CONSIDERATIONS� 127
NOTICES CONSIDERATIONS � 128
DISTRIBUTION CONSIDERATIONS � 129
USAGE CONSIDERATIONS � 129
ATTRIBUTION CONSIDERATIONS� 131

Attribution Types� 131
Presentation of Attributions� 132

SPECIFIC LICENSE OBLIGATIONS � 133
GENERAL GUIDELINES� 134

Chapter 9� 136
SCALING OPEN SOURCE LEGAL SUPPORT� 136
PRACTICAL LEGAL ADVICE� 136
LICENSE PLAYBOOKS� 137
LICENSE COMPATIBILITY MATRIX� 138
LICENSE CLASSIFICATION� 140
SOFTWARE INTERACTION METHODS � 142
CHECKLISTS� 144
CONCLUSION � 145

10

Open Source Compliance in the Enterprise

Chapter 10� 146
THE OPENCHAIN PROJECT� 146
THE BUSINESS CASE FOR COMPLIANCE � 146
PROCESSES ACROSS ORGANIZATIONS � 146
THE PLACE OF THE OPENCHAIN PROJECT � 147
DEFINING KEY REQUIREMENTS OF QUALITY OPEN SOURCE
COMPLIANCE PROGRAMS� 148
PROVIDING AN AVENUE TO CHECK CONFORMANCE WITH KEY
PROCESSES � 149
SUPPORTING CONFORMANCE WITH EDUCATIONAL MATERIAL � 150
ENCOURAGING ADOPTION ACROSS MULTIPLE MARKET SEGMENTS � 152
GETTING INVOLVED � 152

Chapter 11� 154
SOFTWARE PACKAGE DATA EXCHANGE® (SPDX®)� 154
INTRODUCTION � 154

SPDX License List � 155
SPDX License IDs� 158
SPDX Specification – Background� 160
Overview of an SPDX Document � 161
Document Creation Information � 163
Package Information� 164
File Information� 166
Snippet Information� 167
Other Licensing Information� 168
Relationships � 169
Annotations � 171
Tools and Other Resources for Sharing SPDX Documents � 171
Tools That Can Generate SPDX Documents � 172
Tools Able to Import SPDX Documents � 173
Help Improve SPDX � 173

Chapter 12� 175
EVALUATING SOURCE CODE SCANNING TOOLS� 175
KNOWLEDGE BASE� 175
DETECTION CAPABILITIES � 175
EASE OF USE� 176
OPERATIONAL CAPABILITIES � 177

11

Open Source Compliance in the Enterprise

INTEGRATION CAPABILITIES � 178
SECURITY VULNERABILITY DETECTION CAPABILITIES � 178
COST� 179
OTHER METRICS� 180
CONCLUSION� 181

Chapter 13� 183
OPEN SOURCE AUDITS IN MERGER AND ACQUISITION
TRANSACTIONS � 183
INTRODUCTION � 183
COMMON OPEN SOURCE USAGE SCENARIOS � 183
INCORPORATION� 184
LINKING� 185
MODIFICATION� 186
OPEN SOURCE AUDITS� 187
AUDIT METHODS � 189
SECURITY AND VERSION CONTROL � 195
PRE- AND POST-ACQUISITION REMIDIATION � 195
PREPARING FOR AN AUDIT AS THE ACQUISITION TARGET � 196

PREPARING FOR AN AUDIT AS THE ACQUIRING COMPANY � 198
CONCLUSION � 200
REFERENCES� 202

12

Open Source Compliance in the Enterprise

PREFACE

My involvement with open source compliance started early in my career as
a software developer at Ericsson Research, and it has been a part of my job
directly or indirectly for two decades now. Throughout my journey working
with open source software, it was difficult to find practical references on
open source compliance. My interest grew in making my own experiences
available, first as a software developer and then as an engineering manager,
so that others could possibly learn from them and then publish their own
experiences. The goal is that as an industry, we can all strive towards better
ways to achieve open source compliance, while minimizing impact on
engineering resources and product delivery timelines.

This book summarizes my experience driving open source compliance
activities in the enterprise, and focuses on practical aspects of creating
and maintaining open source compliance programs. Since most of my
experience was focused in the embedded space (with C and C++ being
the dominant programming languages), this emphasis comes across
throughout this book.

I hope you find this material useful in your day-to-day drive to achieve open
source compliance. To send corrections and suggestions for improvements,
please fill out the form available from ibrahimatlinux.com/contact.html. I
will ensure that future revisions of this book will include your feedback with
proper attributions.

I also offer my deepest and most sincere gratitude to The Linux Foundation’s
leadership and staff for their trust and their support in making this book
a reality. I am very thankful to Kate Stewart and Shane Coughlan for
contributing the SPDX and OpenChain chapters (respectively). It was a
pleasure to collaborate with them.

http://ibrahimatlinux.com/contact.html

13

Open Source Compliance in the Enterprise

WHAT’S NEW IN THIS EDITION?

The first edition of this book was published in the summer of 2016. Since
then, there has been a lot of progress in many open source compliance
efforts and we reached the point where we believed a refresh was needed.
This second edition includes four new chapters:

•	 Software Package Data Exchange ® (also referred to as SPDX®):
SPDX is an open standard developed under the auspices of the
Linux Foundation whose goal is to provide a common method to
communicate software bill of material information including components,
licenses, copyrights, and security reference. The author of this chapter
is Kate Stewart, Director of Strategic Projects at the Linux Foundation
and one of the co-founders of the SPDX project.

•	 OpenChain: The OpenChain project identifies key recommended
processes for effective open source management. It consists of three
parts: A set of specification, a self-certification noting conformance with
the specifications and a training curriculum. The author of this chapter is
Shane Coughlan, Director of OpenChain at the Linux Foundation.

•	 Evaluating source code scanning tools: This new chapter examines
metrics by which we can evaluate and compare source code scanning
and license identification tools.

•	 Open source audits in merger and acquisition transactions: This
chapter is based on an ebook (https://www.linuxfoundation.org/
resources/open-source-audits-merger-acquisition-transactions/)
we published in early 2018. It provides an overview of the open source
audit process in an M&A transactions and describes in details three
audit methods often used in such a scenario.

In addition to the new chapters, all other chapters from the first edition were
updated to reflect current practices and in some cases incoming feedback.
It is important to note that neither the author nor the contributors are legal
counsels and nothing in this book should be considered as offering legal advice.

https://www.linuxfoundation.org/resources/open-source-audits-merger-acquisition-transactions/
https://www.linuxfoundation.org/resources/open-source-audits-merger-acquisition-transactions/

14

Open Source Compliance in the Enterprise

Foreword

Open source has expanded not only from an idealistic movement led by
individuals around software and intellectual property but from one where
organizations (e.g., governments, companies, and universities) realize that
open source is a key part of their IT strategy and want to participate in its
development. Early success in Linux and other open source technologies
has spread to all areas of technology.

More traditional organizations are also taking notice; they are making open
source software a priority and using the software for strategic advantage in
their operations.

“Open Source First: Simply put, any solution developed using taxpayer dollars
should be in the taxpayer’s domain (open source). At GSA, we believe that all
code we developed should be shared under an open license so others may
benefit from it. In addition, we will give priority to using open source software

as we design now solutions.”
Office of the CIO, U.S. General Services Administration

 (U.S. agency that oversees $66 billion of procurement annually)

“The development of Blockchain technology has the potential
to redefine the operations and economics of the financial
services industry. It emerges at an important time, as the

industry strives to be leaner, more efficient, and more digital.
Open source development will accelerate the innovation and
help drive the scalability of this technology, and we are proud

to support the Hyperledger Project.”
Richard Lumb, Chief Executive, Financial Services, Accenture

15

Open Source Compliance in the Enterprise

“From increasing member investments to a growing, vibrant developer
community, the Dronecode Project’s first year has been extremely exciting. By

bringing efforts together to establish a common platform and utilizing open
source best practices, we’re able to build the foundation for a new era of

drone applications that extend from the camera to the cloud. The Dronecode
‘full-stack’ platform approach, combined with the hardware and software

innovations of its members, will bring about a new generation of drones that
are autonomous, aware of their environments, and continuously connected —

an airborne Internet of Things.”
Chris Anderson, CEO, 3DR

(Former Editor in Chief of Wired magazine and author of “The Long Tail”)

“Open source is essential to our development process. It’s a powerful
approach that lets people work together to build great solutions while realizing

shared benefits.”
Rob Alexander, CIO, Capital One

Organizations are looking for guidance on how best to participate
appropriately in open source communities and to do so in a legal and
responsible way. Participants want to share their code and IP, and they need
a trusted neutral home for IP assets (trademark, copyright, patents). They also
need a framework to pool resources (financial, technical, etc.).

Participants need expertise to train them how to collaborate with their
competitors in an effective manner. To that end, this book is geared to
creating a shared understanding on the best ways to create shared value and
innovation while adhering to the spirit and legal particulars of open
source licensing.

 

 

16

Open Source Compliance in the Enterprise

Chapter 1

INTRODUCTION TO OPEN SOURCE
COMPLIANCE

A CHANGING BUSINESS ENVIRONMENT
Traditionally, platforms and software stacks were implemented using proprietary
software, and consisted of various software building blocks that originated
because of internal development or via third party commercial software
providers with negotiated licensing terms. The business environment was
predictable and companies mitigated potential risks through license and
contract negotiations with the software vendors. It was easy to identify the
provider of every software component in the stack. Figure 1 illustrates the
major building blocks of a traditional hardware and software platform.

17

Open Source Compliance in the Enterprise

Figure 1. A simplified architecture of a platform that relies on proprietary software

building blocks

Over time, companies started to incorporate open source software into their
platforms and software stacks due to the advantages it offers. The reasons
varied from product to product, but the common theme across industries
was that open source components provided compelling features out of the
box, there were meaningful economies to be gained through distributed
development that resulted in a faster time-to-market, and they offered a
newfound ability to customize the source code. As a result, a new multi-
source development model began to emerge.

Under the new model, a product could now have any combination of:

•	 Proprietary code, developed by the company building the product/
service, with the high likelihood of these proprietary component
containing open source code

•	 Proprietary code, originally developed by the company, then integrated
in open source components but not contributed back to the upstream
open source projects

•	 Third party commercial code, developed by third party software
providers. Such code or software components are received by the
company building the product/service under a commercial license, with
high likelihood of it containing open source code

•	 Open source code, developed by the open source community and
received by the company building the product/service under an open
source license.

Figure 2 (next page) illustrates the multi-source development model and
the various combinations of sources for incoming source code. Under
this development model, software components consist of source code
originating from any number of different sources and be licensed under
different licenses; for instance, software component A can include
proprietary source code in addition to third party proprietary source code,
while software component B can include proprietary source code in addition
to source code from an open source project. As the amount of open source

18

Open Source Compliance in the Enterprise

software grew in what were once straightforward proprietary software
stacks, the business environment diverged from familiar territory and
corporate comfort zones.

Figure 2. Multi-source development model

19

Open Source Compliance in the Enterprise

Figure 3. A simplified architectural view of a modern software platform – open source has

proliferated every building block

Figure 3 illustrates the adoption of open source software throughout the
various levels of a given platform or software stack.

One of the major differences between the proprietary and the multi-source
development models has been that the licenses of open source software
are not negotiated. There are no contracts to sign with the software
providers (i.e., open source developers or projects). Rather, the individuals
who initiate the project chose an open source license, and once a project
reaches a certain scale, the licenses are virtually impossible to change.

When using the multi-source development model, companies must
understand the implications of tens of different licenses (and combinations
of licenses) coming from hundreds or even thousands of licensors
or contributors (copyright holders). As a result, the risks companies
previously managed through company-to-company license and agreement
negotiations are now managed through robust compliance programs and
careful engineering practices.

ENTER OPEN SOURCE COMPLIANCE
Open source initiatives and projects provide companies and other
organizations with a vehicle to accelerate innovation through collaboration
with the hundreds and sometimes thousands of communities that represent
the developers of the open source software. However, there are important
responsibilities accompanying the benefits of teaming with the open source
community: Companies must ensure compliance with the obligations that
accompany open source licenses.

Ensuring open source compliance is the process by which users,
integrators, and developers of open source software observe copyright
notices and satisfy license obligations resulting from the use of open
source software. A well-designed open source compliance program should
simultaneously ensure compliance with the terms of open source licenses
and help companies protect their own intellectual property and that of third
party suppliers from unintended disclosure and/or other consequences.

20

Open Source Compliance in the Enterprise

Open source compliance helps achieve four main objectives:

•	 Comply with open source licensing obligations.

•	 Facilitate effective use of open source in commercial products.

•	 Comply with third party software supplier contractual obligations.

•	 Protect your intellectual property from unintended disclosure.

Benefits of Ensuring Open Source Compliance

There are several benefits to achieving open source compliance.
Companies that maintain a compliance program often gain a technical
advantage, since compliant software portfolios are easier to service, test,
upgrade, and maintain. Compliance activities can also help identify crucial
pieces of open source that are in use across multiple products and parts
of an organization, and/or are strategic and beneficial to that organization.
Conversely, compliance can demonstrate the costs and risks associated
with using open source components, as they will go through multiple
rounds of review.

A healthy compliance program can deliver major benefits when working with
external communities as well. In the event of a compliance challenge, such
a program can demonstrate an ongoing pattern of acting in good faith.

Finally, there are less common ways in which companies benefit from
strong open source compliance practices. For example, a well-founded
compliance program can help a company be ready for a possible
acquisition, sale, or new product or service release, where open source
compliance assurance is a mandatory practice before the completion of
such transactions. Furthermore, there is the added advantage of verifiable
compliance in dealing with OEMs and downstream vendors.

FAILURE TO COMPLY
Throughout the software development, errors and limitations in processes
can lead to open source compliance failures. Examples of such failures include:

21

Open Source Compliance in the Enterprise

•	 Failure to provide a proper attribution notice. An attribution
notice is usually provided as a text file together with the open source
component that provides acknowledgement as supplied by the
contributors of open source components.

•	 Neglecting to provide a license notice. A license notice is a file
that includes the open source license text included in the product or
stack and is typically provided with product documentation and/or
within the product or application user interface.

•	 Omission of a copyright notice. A copyright notice is an identifier
placed on copies of the work to inform the world of copyright ownership.

•	 Failure to provide a modification notice. A modification notice
calls out modifications to the source code in a change log file,
such as those required by the GPL and LGPL. An example of a
modification notice is shown below:

/*
* Date	 Author Comment	
* 10/15/2015 Ibrahim Haddad Fixed memory leak in nextlst()
*/

•	 Making inappropriate or misleading statements in the product
documentation or product advertisement material.

•	 Failure to provide the source code. Making source code
available (including the modifications) is one of the requirements of
the GPL/LGPL family of licenses.

•	 Failure to provide a written offer for example when using
GPL/LGPL license source code. A written notice provides the
end users of the product with information on open source software
included in the product, in addition to information on how to
download source code that is eligible to distribution in fulfillment
of license obligations. It is usually provided as part of the product
documentation and accessible from the product’s user interface. A
basic example of a written offer would look like:

22

Open Source Compliance in the Enterprise

To obtain a copy of the source code being
made publicly available by FooBar, Inc. related
to software used in this product, you can visit
http://opensource.foobar.com or send your
request in writing by email to opensource@
foobar.com or by regular postal mail to:

FooBar Inc.
Open Source Program Office Street Address
City, State, Postal Code Country

•	 Failure to provide the build scripts needed to compile the source
code (per GPL and LGPL family of licenses).

In the following sections, we will explore three types of compliance failures, discuss
how they occur, how to avoid them and how to prevent them from recurring.

Intellectual Property Failures

Table 1 (next page) provides examples of common accidental admixture
of proprietary and open source IP that can arise during the software
development process leading to license compliance issues. These problems
most commonly involve mixing source code that is licensed under incompatible
or conflicting licenses (e.g., proprietary, third party, and/or open source).

Such admixtures may force companies to release proprietary source code
under an open source license, thus losing control of their (presumably) high-
value intellectual property and diminishing their capability to differentiate in
the marketplace.

The intellectual property failures can lead to one or more of the following results:

•	 An injunction preventing a company from shipping the product until the
compliance issue has been resolved

•	 A requirement to distribute proprietary source code that corresponds to
the binaries in question under an open source license (depending on the
specific case)

23

Open Source Compliance in the Enterprise

•	 A significant re-engineering effort to eliminate the compliance issues

•	 Embarrassment with customers, distributors, third party proprietary
software suppliers and an open source community

Table 1. Examples of intellectual property failures with examples on how to discover them

and how to avoid them

Problem Type How Discovered How to Avoid

Inserting open source code
into proprietary or 3rd party
code

Occurs during development
process when developers
copy/paste open source
code (aka “snippets”) into
proprietary or 3rd party
source code

By scanning the source
code for possible
matches with open
source code

Offer training to increase
awareness of compliance issues,
open source (OS) licenses,
implications of including OS code
in proprietary or 3rd party code

Conduct regular code scans
of all project source code for
unexpected licenses or code
snippets.

Require approval to use OS
software before committing it
into product repository

Linking of open source into
proprietary source code (or
vice versa – specific to C/
C++ source code)

Occurs as a result of linking
software components
that have conflicting or
incompatible licenses

With a dependency-
tracking tool that allows
discovery of linkages
between different
software components;
ID if type of linkage is
allowed per company’s
OS policies

Offer training on linkage
scenarios based on company
compliance policy

Regularly run dependency
tracking tool to verify all
linkage relationships; flag
any issues not in line with
compliance policies

Inclusion of proprietary
code into an open source
component

Occurs when developers
copy/paste proprietary source
code into OS software

By scanning source
code. Tool will ID
source code that
doesn’t match what’s
provided by OS
component, triggering
various flags for Audit

Train the staff

Conduct regular source code
inspections

Require approval to include
proprietary source code in OS
components

24

Open Source Compliance in the Enterprise

License Compliance Problems

License compliance problems are typically less damaging than intellectual
property problems, as they do not have the side effect of forcing you to
release your proprietary source code under an open source license. License
compliance failures may result in any (or a combination) of the following:

•	 An injunction preventing a company from shipping a product until they
release the source code.

•	 Support or customer service headaches due version mismatches
between the binary in the product and source code released. There are
many reported incidents individuals calling support hotlines to inquire
about open source code releases. In some cases, such incidents
pushed companies to provide basic training on open source compliance
to their hotline or tech support staff.

•	 Embarrassment and/or bad publicity with customers and open source
community.

25

Open Source Compliance in the Enterprise

Table 2. Examples of license compliance problems with suggestions on how to avoid them

Problem Type How to Avoid

Failure to publish source code
packages as part of meeting
license obligations

Follow a detailed compliance checklist to ensure
that all compliance action items have been
completed when a given product, application, or
software stack is released into the market

Failure to provide correct version
of the source code corresponding
to the shipped binaries

Add a verification step into the compliance process
to ensure that you’re publishing the version of
source code that exactly corresponds to the
distributed binary version

Failure to release modifications
that were introduced to the
open source software being
incorporated into the shipping
product

Use a bill of material (BOM) difference tool that
allows the identification of software components
that change across releases

Re-introduce the newer version of the software
component in the compliance process

Add the “compute diffs” of any modified source
code (eligible for open source distribution) to the
checklist item before releasing open source used in
the product

Failure to mark open source
code that has been changed or
to include a description of the
changes

Add source code marking as checklist item before
releasing source code

Conduct source code inspections before releasing
the source code

Add milestone in compliance process to verify
modified source code has been marked as such

Offer training to staff to ensure they update the
change logs of source code files as part of the
development process

Table 2 above provides examples of the most common license compliance
problems that occur during the software development process, and offers
tips on how to avoid them.

26

Open Source Compliance in the Enterprise

Process Failures

Process failures can lead to infringement of the open source licensing terms
such as the inability to meet the license obligations.

Table 3. Sample process compliance failures with suggestions on how to avoid them

Failure How to Avoid

Failure of developers to request
approval from the internal open
source committee (often called
Open Source Review Board) to
use open source software,

or

Failure to submit a request within
a reasonable period of time

Train employees on policies and processes

Conduct periodic full scans of all software to detect
any OS not corresponding to a given approval form.
If OS component or snippet is found in the build
system without a corresponding compliance ticket,
a new ticket is auto-generated.

Include compliance in performance reviews; e.g.,
failure to abide by the compliance policies directly
affects employees’ bonuses

Mandate that developers file approval requests early,
even if they didn’t yet decide on adoption of OS code

Failure to take the open source
training

Ensure OS training is part of the employees’
professional development plan and that it is
monitored as part of their performance review
process

Failure to audit the source code Provide proper training to compliance staff

Conduct periodic source code scans

Ensure that auditing is a milestone in the iterative
development process

Provide proper level of staffing to the auditing team

Failure to resolve the audit
findings

Do not allow compliance tickets to be resolved if
audit report is not finalized. Compliance ticket is
closed only if no open subtasks are attached to it

27

Open Source Compliance in the Enterprise

Table 3 (previous page) lists the most common compliance process failures
that occur during the stages of the software development process, and
discusses how to avoid them.

LESSONS LEARNED
In the past few years, we have witnessed several cases of non-compliance
that made their way to the public eye. Increasingly, the legal disposition
towards non-compliance has lessons to teach open source professionals —
lessons that we will explore in following subsections.

Ensure Compliance Prior to Product
Shipment/Service Launch

The most important outcome of non-compliance cases has been that the
companies involved ultimately had to comply with the terms of the license(s)
in question, and the costs of addressing the problem after the fact has
categorically exceeded those of basic compliance. Therefore, it is really a smart
idea to ensure compliance before a product ships or a service launches.

It is important to acknowledge that compliance is not just a legal-
department exercise. All facets of the company must be involved in ensuring
proper compliance and contributing to correct open source consumption
and, when necessary, redistribution. This involvement includes establishing
and maintaining consistent compliance policies and procedures as well as
ensuring that the licenses of all the software components in use (proprietary,
third party, and open source) can co-exist before shipment or deployment.
To that effect, companies need to implement an end-to-end open source
management infrastructure that will allow them to:

•	 Identify all open source used in products/services, and/or used
internally

•	 Perform architectural reviews to verify if and how license obligations
are extending to proprietary and third party software components

•	 Collect the applicable open source licenses for review by Legal

28

Open Source Compliance in the Enterprise

•	 Develop open source use and distribution policies and procedures

•	 Mitigate risks through architecture design and engineering practicess

Non-Compliance is Expensive

Most of the public cases related to non-compliance have involved GPL
source code. Those disputes reached a settlement agreement that included
one or more of these terms:

•	 Take necessary action to become compliant. In extreme cases,
this correction can be very costly in terms of engineering effort and
impact to the product launch timeline.

•	 Appoint a Compliance Officer to establish a formal compliance
program, monitor and ensure compliance on an ongoing basis.

•	 Notify previous recipients of the product with the non-compliance
issue that the product contains open source software and inform
them of their rights with respect to that software.

•	 Publish licensing notice on company website.

•	 Provide additional notices in product publications.

•	 Make available the source code including any modifications applied
to it (specific to the GPL/LGPL family of licenses and similar licenses
with a code distribution requirement).

•	 Cease binary distribution of the open source software in question
until it has released complete corresponding source code or make it
available to the specific clients affected by the non-compliance.

•	 In some cases, pay an undisclosed amount of financial
consideration to the plaintiffs.

29

Open Source Compliance in the Enterprise

Furthermore, companies have incurred other costs when their compliance
has been challenged such as:

•	 Discovery and diligence costs in response to the compliance inquiry,
where the company had to investigate the alleged inquiry and
perform due diligence on the source code in question

•	 Outside and in-house legal costs

•	 Damage to brand, reputation, and credibility

In almost all cases, the failure to comply with open source license
obligations has also resulted in public embarrassment, negative press, and
damaged relations with the open source community.

Relationships Matter

For companies using open source software in their commercial products, it
is recommended to develop and maintain a good relationship with members
of the open source communities that create and sustain the open source
code they consume. The communities of open source projects expect
companies to honor the licenses of the open source software they include
in their products. Taking steps in this direction, combined with an open and
honest relationship, is very valuable.

Training is Important

Training is an essential building block in a compliance program, to ensure
that employees have a good understanding of the policies governing the
use of open source software. All personnel involved with software need
to understand the company’s policies and procedures. Companies often
provide such education through formal and informal training sessions.

30

Open Source Compliance in the Enterprise

Chapter 2
ESTABLISHING AN OPEN SOURCE
MANAGEMENT PROGRAM

An open source management program provides a structure around all
aspects of open source software, including selection, approval, use,
distribution, audit, inventory, training, community engagement, and public
communication.

This chapter provides a high-level overview of the various elements in an
open source management program, surveys the challenges in establishing a
new compliance program, and provides advice on how to overcome those
challenges.

OPEN SOURCE COMPLIANCE PROGRAM
We begin this chapter with an overview of the core elements needed in a
successful open source compliance program. Figure 4 (next page) provides
an overview of these essential elements that we discuss throughout this chapter.

31

Open Source Compliance in the Enterprise

Figure 4. Essential elements of an open source management program consisting of eight

essential elements: strategy, policies and processes, teams, tools, education, automation,

communication and participating in relevant industry initiatives.

Compliance Strategy

The open source compliance strategy drives the business-based consensus
on the main aspects of the policy and process implementation. If you do not
start with that high-level consensus, driving agreement on the details of the
policy and on investments in the process tends to be very hard, if not impossible.

The strategy establishes what must be done to ensure compliance and
offers a governing set of principles for how personnel interact with open
source software. It includes a formal process for the approval, acquisition,

32

Open Source Compliance in the Enterprise

and use of open source, and a method for releasing software that contains
code licensed under an open source license.

Inquiry Response Strategy

The inquiry response strategy establishes what a company must do when
their compliance efforts are challenged. Several companies received
negative publicity — and some were formally challenged — because they
ignored requests to provide additional compliance information, did not know
how to handle compliance inquires, lacked or had a poor open source
compliance program, or simply refused to cooperate with the inquirer. None
of these approaches is fruitful or beneficial to any of the parties involved.

Therefore, companies should have a process in place to deal with incoming
inquiries, acknowledge their receipt, inform the inquirer that they will
be looking into it, and provide a realistic date for follow-up. Chapter 7
discusses a simple process for managing open source compliance inquiries.

Policies and Processes

The open source compliance policy is a set of rules that govern the management
of open source software (both use of and contribution to). Processes are
detailed specifications as to how a company will implement these rules on a
daily basis. Compliance policies and processes govern the various aspects
of using, contributing, auditing, and distribution of open source software.

Figure 5. Sample compliance due-diligence process

33

Open Source Compliance in the Enterprise

Figure 5 illustrates a sample compliance process, with the various steps
each software component will go through as part of the due diligence.
Chapter 4 is dedicated to discussing the compliance process.

Compliance Teams

The open source compliance team is a cross-disciplinary group consisting
of various individuals tasked with the mission of ensuring open source
compliance. The core team, often called the Open Source Review Board
(OSRB), consists of representatives from engineering and product teams,
one or more legal counsel, and the Compliance Officer. The extended team
consists of various individuals across multiple departments that contribute
on an ongoing basis to the compliance efforts: Documentation, Supply
Chain, Corporate Development, IT, Localization and the Open Source
Executive Committee (OSEC). However, unlike the core team, members of
the extended team are only working on compliance on a part-time basis,
based on tasks they receive from the OSRB.

34

Open Source Compliance in the Enterprise

Figure 6. Individuals and teams involved in ensuring open source compliance

Figure 6 illustrates the two teams involved in achieving compliance: the core
team and the extended team. Chapter 3 provides a detailed discussion on
the roles and responsibilities of individuals involved in achieving open source
compliance.

Tools

Open source compliance teams use several tools to automate and facilitate
the auditing of source code and the discovery of open source code and its
licenses. Such tools include:

•	 A compliance project management tool to manage the compliance
project and track tasks and resources.

•	 A software inventory tool to keep track of every single software
component, version, and product that uses it, and other related
information.

35

Open Source Compliance in the Enterprise

•	 A source code scanning and license identification tool to help
identify the origin and license of the source code included in the
build system. Chapter 12 explores the various metrics companies
can use to evaluate and compare such existing tools in the market.

•	 A linkage analysis tool to identify the interactions of any given C/C++
software component with other software components used in the
product. This tool will allow you to discover linkages between source
code packages that do not conform to company policy. The goal is
to determine if any open source obligations extend to proprietary or
third party software components. If a linkage issue is found, a bug
ticket is assigned to Engineering with a description of the issue in
addition to a proposal on how to solve the issue.

•	 A code review tool to review the changes introduced to the original
source code before disclosure as part of meeting license obligations.

•	 A bill of material (BOM) difference tool to identify the changes
introduced to the BOM of any given product given two different builds.
This tool is very helpful in guiding incremental compliance efforts.

Web Presence

Companies use portals in two directions: inwards, inside the company; and
outwards, as a window to the world and the open source community.

The internal portal hosts the compliance policies, guidelines, documents,
training, announcements, and access to mailing lists. The external portal
offers a public platform for the world and the open source community, as
well as a venue to post source code of open source packages, notices, and
other disclosures, in fulfillment of license obligations.

36

Open Source Compliance in the Enterprise

Education

Education is an essential building block in a compliance program, to help
ensure that employees possess a good understanding of policies governing
the use of open source software. The goal of providing open source and
compliance training — formally or informally — is to raise awareness of
open source policies and strategies and to build a common understanding
around the issues and facts of open source licensing as well as the
business and legal risks of incorporating open source software in products
and/or software portfolios. Training also serves as a venue to publicize and
promote the compliance policy and processes within the organization and
to foster a culture of compliance.

Formal Training

Depending on the size of the company and the extent to which open source
is included in its commercial offerings, the company can mandate that
employees working with open source take formal instructor-led courses,
possibly culminating in actual exams.

Informal Training

Informal training channels may include any or all of the following:

•	 Brown bag seminars: Brown bag seminars are usually presentations
made during lunchtime by a company employee or an invited
speaker. The goal of these brown bag seminars is to present and
evoke discussions of the various aspects of incorporating open
source in a commercial product or an enterprise software portfolio.
These sessions can also include discussions of the company’s
compliance program, policies, and processes.

•	 New employee orientation: In some instances, the Compliance
Officer presents on the company’s compliance efforts, rules,
policies, and processes to new employees as part of employee
orientation, supplying new employees with necessary open source
management information: who to talk to, what internal website to
visit, how to sign up for open source and compliance training, etc.

37

Open Source Compliance in the Enterprise

Automation

Developers who wish to use or contribute to open source software will be
requested to submit online requests and get proper approvals. This process
is best managed via an automated online system, commonly a bug tracker
that has a specifically designed workflow to accommodate the management
of open source compliance.

Messaging

Messaging, both internal and external, is an integral part of any compliance
program. The single most important recommendation with respect to
messaging is to be clear and consistent, whether it is internally explaining
the company’s goals and concerns around open source to your employees
or externally toward the developer communities of the open source projects
you use in your product/software stack.

Industry Initiatives

There are several industry initiatives targeted to simplify and enable better
open source compliance such as the Software Packaged Data Exchange®
(SPDX), OpenChain, the Linux Foundation Open Compliance Program, and
the TODO Group. We discuss these initiatives throughout the book. We
recommend companies to get involved in these initiatives to gain additional
knowledge and support their internal compliance efforts.

COMPLIANCE CHALLENGES AND SOLUTIONS
Companies will almost certainly face challenges establishing their
open source compliance program. In the following sections, we explore
five common challenges and offer recommendations on how to
overcome them.

Creating a Compliance Program

The first challenge is to balance the compliance program and its supporting
infrastructure with (existing) internal processes while meeting deadlines to

38

Open Source Compliance in the Enterprise

ship products and launch services. Various approaches can help ease or
solve such challenges and assist in the creation of a streamlined program
that does pose a burden to development activities.

Proposed Solutions

EXECUTIVE SUPPORT

Executive-level, long-term commitment to the open source management
program is essential to ensure success and continuity.

LIGHTWEIGHT POLICIES AND PROCESSES

Processes and policies are important; however, they have to be light
and efficient so that development teams do not regard them as overly
burdensome to the development process.

Streamline open source management upon two important foundational
elements: a simple and clear compliance policy and a lightweight
compliance process.

MANDATE BASIC RULES

As part of establishing a compliance program, you will need to create some
simple rules that everyone must follow:

•	 Require developers to fill out a request form for any open source
software they plan to incorporate into a product of software stack.

•	 Require third party software suppliers to disclose information about
open source software included in their deliverables. Your software
suppliers may not have great open source compliance practices.
Therefore, a general recommendation is for companies to update
their contractual agreement including language related to open source
disclosures and clarifying all matters related to open source compliance.

•	 Mandate architecture reviews and code inspections for the Open
Source Review Board (OSRB) to understand how software components
are interrelated and to discover license obligations that can

39

Open Source Compliance in the Enterprise

propagate from open source to proprietary software. You will need
proper tooling to accommodate a large-scale operation.

•	 Scan all incoming software received from third party software
providers and ensure that their open source disclosures are correct
and complete.

INTEGRATE COMPLIANCE IN THE DEVELOPMENT PROCESS

The most successful way to establish compliance is to incorporate the
compliance process and policies, checkpoints and activities as part of
existing software development processes.

Long-Term Goals versus Short-Term Execution

Figure 4 described the essential elements needed for a successful compliance
program. Some team members may be overwhelmed by the amount of
work needed to implement such a complete program. In reality, it is not very
difficult, because you do not have to implement all elements simultaneously.

The priority for all organizations is to ship products and services on time
while building and expanding their internal open source compliance
infrastructure. Therefore, you should expect to build your compliance
infrastructure as you go, keeping in mind scalability for future activities and
products. The key is thoughtful and realistic planning.

Proposed Solutions

•	 Plan a complete compliance infrastructure that can meet your
long- term goals, but then implement only the elements stepwise,
as needed for short-term execution. For instance, if you are just
starting to develop a product or deliver a service that includes open
source and you do not yet have any compliance infrastructure in
place, the immediate concern should be establishing a compliance
team, processes and policy, tools and automation, and training your
employees. Having kicked off these activities (in that order) and
possessing a good grip on the build system (from a compliance
perspective), you can move on to other program elements.

40

Open Source Compliance in the Enterprise

•	 Establish essential policies and processes.

•	 Incorporate compliance milestones as part of the development process.

Communicating Compliance

Communication is essential to ensure the success of compliance activities.
Companies should consider two important types of communication: internal
communication within the organization, and external towards the developer
communities of the open source projects used in their products and
towards the end users of their products.

Internal Communication

Companies need internal compliance communication to ensure employees
are aware of what is involved when they include open source in a
commercial software portfolio, and to ensure that they are educated about
the company’s compliance policies, processes, and guidelines. Internal
communications can take any of several forms:

•	 Email communication providing executive support

•	 Formal training to all employees working with open source software

•	 Brown-bag open source and compliance seminars to bring
additional compliance awareness and promote active discussion

•	 An internal open source portal to host the company’s compliance policies
and procedures, open source related publications and presentations,
mailing lists, and a discussion forum related to open source and compliance

•	 A company-wide open source newsletter, usually sent every other month
or on quarterly basis, to raise awareness of open source compliance

External Communication

Companies need external compliance communications to ensure that
the open source community is aware of their efforts to meet the license
obligations of the open source software they are using in their products.

41

Open Source Compliance in the Enterprise

•	 External communications can take one of several forms:

•	 Website dedicated to distributing open source software for the
purpose of compliance

•	 Outreach and support of open source organizations: Such activities
are important to help the company build relationships with open
source organizations, understand the roles of these organizations,
and contribute to their efforts where it makes sense

•	 Participation in open source events and conferences: Participation
can be at various levels ranging from sponsoring an event, to
contributing presentations and publications, or simply sending
developers to attend and meet open source developers and foster
new relationships with open source community members

Establishing a Compliant Software Baseline

One of the initial challenges when starting a compliance program is to find
exactly which open source software is in use and under which licenses it
is available. We often refer to this initial auditing process as establishing a
clean compliance baseline for the product or software stack.

The activity of establishing a compliant baseline is an intensive activity over
a period of time that can extend for months, depending on how soon you
started the compliance activities in parallel to the development activities.

Proposed Solutions

Organizations achieve initial compliance through the following activities:

•	 Early submission and review of open source usage requests.

•	 Continuous automated source code based on a predefined interval
of time for all source code.

•	 Continual scans on the source code base, including code received
from third party software providers, to intercept source code that is
checked into the code base without a corresponding compliance

42

Open Source Compliance in the Enterprise

ticket. Such source code scans can be scheduled to run on a
monthly basis, for instance.

•	 Enforced design and architectural review, in addition to code
inspections, to analyze the interactions between open source,
proprietary code, and third party software components. Such
reviews are mandatory only when a given interaction may invoke
license compliance obligations.

If a company fails to establish baseline compliance, they are guaranteed to face
compliance challenges in any future revisions of the same product (or other
products/services using code from the initial baseline). To guard against such
scenarios, companies should consider the following:

•	 Implement lightweight policies and processes that set a framework
for managing the intake of open source software.

•	 Include compliance checkpoints as part of the software
development process. Ideally, with every development milestone,
you can incorporate a corresponding compliance milestone,
ensuring that all software components used in the build have parallel
and approved compliance tickets.

•	 Ensure availability of a dedicated compliance team. Chapter 3
covers this topic in detail.

•	 Utilize tools and automation to support efficient processing of
compliance tickets. We discuss this topic throughout the book.
Chapter 12 focuses on various criteria to evaluate source code
scanning tools.

43

Open Source Compliance in the Enterprise

Maintaining Compliance

There are several challenges in maintaining open source compliance, similar
to those faced when establishing baseline compliance, but on a smaller,
incremental scale.

Maintaining compliance is a continuous effort that depends on discipline
and commitment to incorporate compliance activities into existing
engineering and business processes. Figure 7 illustrates the concept of
incremental compliance. Incremental compliance is the act of ensuring
compliance between versions, covering the delta between the last
compliant code baseline and current source code base.

Figure 7. Example of incremental compliance

Proposed Solutions

Companies can maintain incremental compliance through the following activities:

•	 Adherence to the company’s compliance policy and process, in
addition to any provided guidelines

•	 Continuous audits of all source code integrated in the code base,
regardless of its origins

•	 Continuous improvements to the tools used in ensuring compliance
and automating as much of the process as possible to ensure high
efficiency in executing the compliance program

44

Open Source Compliance in the Enterprise

Institutionalization and Sustainability

Maintaining open source compliance activities is an ongoing challenge as
the organization grows and deploys more open source software in new
products and services. Companies can take several steps to institutionalize
compliance within their development culture and to ensure its sustainability.

Proposed Solutions

SPONSORSHIP

Executive-level commitment is essential to ensure sustainability of
compliance activities. A company executive required to be the champion
and financial sponsor for the open source compliance program.

CONSISTENCY

Achieving consistency across the company is key in large companies with
multiple business units and subsidiaries. A consistent approach helps with
recordkeeping, and facilitates sharing best practices, tooling, guidelines
and source code across groups. Consistency is managing compliance is
mandatory in large companies with multiple business units.

MEASUREMENT AND ANALYSIS

Measure and analyze the impact and effectiveness of compliance activities,
processes, and procedures with the goal improving the compliance
program. It is hard to improve a specific function if you cannot measure it.

Metrics will help you communicate the productivity advantages that accrue
from each program element when promoting the compliance program.

REFINING COMPLIANCE PROCESSES

The scope and nature of an organization’s use of open source is dynamic—
dependent on products, technologies, mergers, acquisitions, offshore development
activities, and many other factors. Therefore, it is necessary to continuously
review compliance policies and processes and introduce improvements.

45

Open Source Compliance in the Enterprise

Furthermore, open source license interpretations, legal compliance risks,
and copyright trolling continue to evolve. A compliance program must
evolve as well to mitigate such risks via better and improved engineering
and compliance practices.

ENFORCEMENT

An effective compliance program should include mechanisms for ongoing
monitoring of adherence to the program and for enforcing policies, procedures,
and guidelines throughout the organization. One way to enforce the
compliance program is to integrate it within the software development process.
Some companies go a little further by ensuring that a specific portion of
their employees performance evaluation depend on their commitment to and
execution of compliance program activities at their individual and group levels.

STAFFING

Companies must ensure they allocate proper staffing to the compliance
function, and offer adequate compliance training to all employees. In larger
organizations, the compliance officer and related roles are FTEs (full time
equivalents); in smaller organizations, the responsibility of compliance is
likely to be a shared and/or a part-time activity.

46

Open Source Compliance in the Enterprise

Chapter 3
ACHIEVING COMPLIANCE: ROLES
AND RESPONSIBILITIES

Companies have used various ways to structure their teams responsible for
fulfilling this function. Some companies have opted for a centralized team
(Open Source Program Office) led by an individual who has engineering,
legal and operational experience. Other companies have opted for a cross-
functional team that consists of a dedicated Open Source Compliance
Officer who has access to various individuals and teams that contribute to
the compliance effort without being part of a centralized team. In this chapter,
we examine roles and responsibilities of the individuals and teams trusted
with ensuring compliance regardless of the specific structural model of
these teams. A single individual, no matter how adept, cannot successfully
implement open source compliance across a whole organization.

Figure 8 (next page) illustrates a breakdown of the different departments
responsible for achieving open source compliance. There are two teams
involved in achieving compliance: a core team and an extended team, with
the latter typically being a superset of the former.

The core team, often called the Open Source Review Board (OSRB),
consists of representatives from legal, engineering, and product teams, in
addition to the Compliance Officer. Table 4 (next page) describes the roles
and responsibilities of each participant in this core team.

The extended team, described in Table 5 (page 49), consists of various
individuals across multiple departments that contribute on an on-going
basis to the compliance efforts: Documentation, Supply Chain, Corporate
Development, IT, Localization, and the Open Source Executive Committee
(OSEC). However, unlike the core team (in substantial organizations),
members of the extended team are contributing to the compliance efforts
on a part- time basis, based on tasks they receive from the OSRB.

47

Open Source Compliance in the Enterprise

Figure 8. Individuals and teams involved in ensuring open source compliance

Table 4. Primary roles and responsibilities of the compliance core team (OSRB)

Participant	 Primary Roles and Responsibilities

Legal Representative

This representation varies from a
Legal counsel to a Legal paralegal
depending on the specific task.

Participate in OSRB and OSEC

Review and approve usage, modification,
distribution of open source (OS) software

Provide guidance on licensing Contribute to and
approve training

Contribute to improving the OS compliance program

Review and approve content of OS portals

Review and approve list of obligations to fulfill
Review and approve open source notices

48

Open Source Compliance in the Enterprise

Table 4 (cont’d). Primary roles and responsibilities of the compliance core team (OSRB)

Participant	 Primary Roles and Responsibilities

Engineering and Product Team
Representative

In some companies, there is no
distinction between engineering and
product teams.

Participate in OSRB and OSEC

Follow compliance policies and processes
Integrate compliance practices in development
process

Contribute to improving the compliance program

Follow technical compliance guidelines
Respond quickly to all questions

Conduct design, architecture, and code reviews

Prepare software packages for distribution

Compliance Officer

Open source compliance officer is not
necessary a dedicated resource. In
most cases, the individual fulfills the
role of Manager or Director of Open
Source.

Drive all compliance activities

Coordinate source code scans and audits

Coordinate distribution of source code packages

Participate in OSRB and OSEC

Contribute to compliance and OS training

Contribute to improving compliance program

Report to OSEC on compliance activities

Contribute to creation of new tools to facilitate
automation, discovery of OS in development
environment

49

Open Source Compliance in the Enterprise

Table 5. Primary roles and responsibilities of the compliance extended team

Participant	 Primary Roles and Responsibilities

Open Source Executive Committee
(OSEC) Decide on open source
strategy

Review and approve proposals to release IP

Review and approve proposals to release
proprietary source code under an open source
license. This is not required if the source code
was created with the assumption that it will be
open sourced.

Documentation Include open source license information and
notices in the product documentation

Localization	 Translate basic information in target languages
about open source information related to the
product or software stack

Supply Chain	 Mandate third party software providers to
disclose open source in licensed or purchased
software components

Assist with ingress of third party software
bundled with and/or includes open source
software

Information Technology (IT)	 Provide support and maintenance for the tools
and automation infrastructure used by the
compliance program

Create and/or acquire new tools based on
OSRB requests

Corporate Development	 Request open source compliance be
completed before a merger or an acquisition

Request open source compliance be
completed when receiving source code from
outsourced development centers or third party
software vendors

50

Open Source Compliance in the Enterprise

OPEN SOURCE REVIEW BOARD (OSRB)
The OSRB is responsible for:

•	 Ensuring mutual compliance with third party software and open
source software licenses.

•	 Facilitating effective usage of and contributions to open source
software.

•	 Protecting proprietary intellectual property (and consequently
product differentiation) from unintended disclosure.

On a daily basis, OSRB members are involved in the following tasks:

•	 Establish the Compliance End-to-End Process: The OSRB is
responsible for creating the compliance end-to-end process
including usage, audit, development, engagement, assurance, and
compliance management. Chapter 4 provides an overview of the
end-to-end compliance process.

•	 Create and maintain compliance policies, processes, guidelines,
templates, and forms used in the compliance program.

51

Open Source Compliance in the Enterprise

•	 Review requests for the use, modification, and distribution of open
source: The OSRB reviews and approves incoming requests from
engineering and product teams for using open source. Chapter 6
provides a discussion on the usage process.

•	 Perform software audits: The OSRB performs audits on all software
included in a product or a software stack, which involves the
following tasks:

•	 Run a source code scanning tool over the software base

•	 Analyze the results provided by the scanning tool

•	 Address all the hits, possible matches, and licensing
conflicts flagged by the scanning tool

•	 Oversee the closure of all issues identified by scanning tools

•	 Create a final audit report that captures all open source
software components and snippets, their origin and license.

Note:
Depending on the size of the organization, auditing responsibilities
can be assigned to the OSRB or to an independent team (auditing
team) that reports to the Compliance Officer. Chapter 6 provides a
discussion of the auditing process.

•	 Perform architectural reviews: As part of the approval process, the
OSRB performs architecture review with engineering representative
to analyze the interaction between open source code, proprietary
code, and third party source code. The goal of this review is to
ensure that developers respect the architectural guidelines and that
the interactions among open source, proprietary, and third party
software are within the acceptable legal guidelines. The architecture
review includes performing a linkage analysis review to determine if
any open source license obligations propagate to proprietary or third
party software through linking.

52

Open Source Compliance in the Enterprise

•	 Verify the resolution of issues that deter releasing product or
launching services that contain open source.

•	 Provide guidance on open source questions coming from company
staff and engineers.

•	 Perform code inspections as part of the pre-distribution verification,
to ensure that open source license text and copyright notices have
been kept intact and that engineers have updated the change logs
to reflect the changes introduced to the source code.

•	 Compile a list of all applicable license obligations that must be
fulfilled and pass it to appropriate departments for fulfillment: As
part of the pre-distribution process, the OSRB performs final checks
before product or service releases.

•	 Develop and offer open source and compliance training: The OSRB
drives the development of open source and compliance training to
ensure that employees have a good understanding of the company’s
open source policies and compliance practices. In some cases, the
training also covers the most common open source licenses and the
concerns arising from using open source in commercial contexts.
Training must be mandatory for all staff engaged in management
and development of software using open source.

•	 Host and maintain the company’s open source websites: The internal
website, intended for employees, focuses on open source processes
and policies, guidelines, training, and announcements. The external
website usually exists for the primary reason of making available
source code packages in fulfillment of certain compliance obligations.

•	 Handle compliance inquiries: The OSRB is responsible for answering
any inquiries sent to the company in relation to open source compliance.
Chapter 9 discusses the process of handling compliance inquiries.

•	 Maintain records of compliance: The OSRB is responsible for
ensuring the correctness and upkeep of compliance records for any
given open source software component.

53

Open Source Compliance in the Enterprise

•	 Review end-user documentation to ensure that appropriate
copyright, attribution, and license notices are presented to the end
user of the product/service regarding open source included in the
product or the software stack. In addition, specific to the GPL/
LGPL family of licenses, provide a written offer on how to obtain the
source code, when applicable.

•	 Recommend new tools to be used as part of the compliance
infrastructure that will contribute to making the compliance work
more efficient.

•	 Sign off on product distribution from an open source compliance
perspective.

•	 Develop community involvement policy, process, procedures, and
guidelines. This responsibility is not compliance-related; however, it
is listed here for completion purposes.

LEGAL
The Legal Counsel is a core member of the OSRB, the committee that
ensures compliance with open source licenses. The Legal Counsel focuses
on four essential duties:

1.	 Provide approval for the use of open source in products/services

The approval of the Legal Counsel is required when using open source in
a commercial product. Typically, the Legal Counsel reviews the compliance
ticket in the online tracking system (for instance, JIRA or Bugzilla), the resulting
report from the scanning tool, and the license information provided with the
source code package. They then evaluate risk factors based on feedback
provided by both engineering and the open source compliance officer.

As part of this exercise, the Legal Counsel decides on incoming and
outgoing licenses of the software component in question. The incoming
licenses are the licenses of all source code included in a given body of
code; the outgoing licenses are the licenses under which the source code
and/or object files are being made available to its recipients.

54

Open Source Compliance in the Enterprise

2.	 Advise on open source licensing

•	 Offer guidance about open source license obligations.

•	 Advise on licensing conflicts: Such conflicts arise when combining
code licensed under incompatible or conflicting licensing terms.

•	 Advise on IP issues associated with the use of open source.
This is especially the case when the company is about to release
proprietary source code under an open source license(s).

•	 Provide recommendations and guidance on open source questions
and concerns.

3.	 Review and approve updates to end-user documentation

This form of legal support is related to ensuring that appropriate open source
notices (copyright, attributions, and license notices) are provided to consumers
in relation to any open source included in the product. In addition, if there is
source code licensed under one of the GPL/LGPL family of licenses, a written offer
needs to be provided along with information on how to obtain the source code.

4.	 Contribute to establishing and managing the compliance program

•	 Establish and maintain the open source policy and process.

•	 Handle inquiries sent to the company in relation to open source
compliance.

•	 Provide training around open source licenses, company policies,
and guidelines.

ENGINEERING AND PRODUCT TEAMS
Engineering and product teams may have one or more representatives who
participates in the OSRB, track down all compliance-related tasks assigned
to engineering, and ensure proper resolution.

In parallel, engineering and product teams have several responsibilities with
respect to open source compliance:

55

Open Source Compliance in the Enterprise

•	 Submit requests to use open source software: Engineering and product
teams decide what external software to bring into the product, including
third party and open source. Their primary responsibility from a
compliance perspective is to submit a usage form for any open source
planned for inclusion in a product or service. The form describes the
intended use of the open source in question and helps construct
and maintain a good record of software origin and provenance.

•	 Follow technical compliance guidelines: Engineering and product teams
should follow OSRB technical guidelines to architect, design, integrate,
and implement source code. The OSRB guidelines typically cover:

•	 Common mistakes and how to avoid them

•	 Rules to follow when integrating libraries and other
middleware to avoid linkage issues that might arise

•	 Development in kernel space versus user space (on Linux),
especially with whole-platform development in embedded
environments

•	 Specific engineering situations that are applicable to open
source compliance

•	 Conduct design reviews: Engineering teams should continuously
conduct design reviews to discover and remedy any compliance
issues in a timely manner.

•	 Cooperate with OSRB: Engineering teams must respond promptly
to questions asked by the OSRB and cooperate in resolving
compliance tickets.

•	 Track source code changes: Engineering should maintain a change
log for each modified source code. Depending on the open source
license in questions, some licenses (such as the GPL/LGPL family
of licenses) mandate that modified files to carry prominent notices
stating that you changed the files and the date of the change(s).

•	 Prepare source code packages for distribution: Engineering teams
prepare the source code packages for publication as part of

56

Open Source Compliance in the Enterprise

meeting open source license obligations. Chapter 5 discusses other
source code distribution methods.

•	 Integrate compliance milestones as part of the development
process: This exercise takes place in collaboration with the OSRB
and the Compliance Officer.

•	 Undergo open source training: All engineers must take the available
open source compliance training.

•	 Monitor the open source projects to determine whether any
bug fixes or security patches have become available, and take
responsibility for updating the open source component used in
the product. The individual package owner within the organization
usually performs this specific task.

COMPLIANCE OFFICER
The Compliance Officer, Manager/Director of Open Source, chairs the OSRB
and manages the compliance program. This role is typically accountable for
the following core responsibilities with respect to open source compliance:

•	 Managing and executing company-wide Open Source strategy and
business metrics that track business and technical success of the program

•	 Lead cross-functional OSRB that acts as a clearinghouse for all
inbound and outbound open source software activities

•	 Conceives, implements and executes internal and external processes
that allow the company to be an aggressive consumer of open
source software and a participant in open source communities

The compliance officer must possess as many as possible of the following skills:

•	 Proven record of accomplishment creating and executing an open
source strategy and tactics for a commercial ISV or IHV

•	 Strong teamwork skills that demonstrate the ability to drive cross-
functional alignment across engineering, marketing and business
development disciplines

57

Open Source Compliance in the Enterprise

•	 Strong technical / engineering background to engage directly with
engineering teams, development partners, and industry consortia to
assess and drive opportunities

•	 Success conceiving and deploying lightweight internal and external
processes cross-functionally that drive business success

•	 Strong written and verbal communications skills

•	 Demonstrated ability to act as the primary internal and external
evangelist for open source

•	 Strong existing relationships with relevant open source communities,
industry consortia, and open source foundations

•	 Solid understanding of common open source licenses to discuss
with legal counsel

•	 Knowledge of industry practices

•	 Knowledge and experience in establishing corporate-wide policies
and processes

In addition to the responsibilities pertaining to the OSRB, the Compliance
Officer carries the following duties:

•	 Drive the compliance process and act as the compliance program
manager, ensuring all compliance-related tasks are addressed and
there are no compliance issues blocking products from shipping

•	 Coordinate source code scans and drive all auditing issues to closure

•	 Participate in engineering design reviews, code inspections, and
distribution readiness assessments to assure that the engineering
and product teams follow all compliance processes and policies and
conform to the approved OSRB usage form

•	 Coordinate source code distribution of open source packages (when
stipulated by licenses) with engineering and product teams, including
preparing and verifying a distribution checklist for each open source package

58

Open Source Compliance in the Enterprise

•	 Act as liaison between OSEC and OSRB

•	 Escalate compliance issues to OSEC

•	 Act as liaison between the engineering and product team and the
OSRB and OSEC in regard to usage plan approval processes

•	 Report on compliance activities to the OSEC, including flagging
issues that prevent shipping a product or service

OPEN SOURCE EXECUTIVE COMMITTEE
The Open Source Executive Committee (OSEC) consists of engineering, legal,
and product marketing executives in addition to the Compliance Officer. The
OSEC is responsible for setting open source strategy, reviewing and approving
release of intellectual property, and launching new open source projects.

DOCUMENTATION
The documentation team is responsible for incorporating written offer and
any appropriate open source notices in the product documentation. Figure
9 provides the basic workflow of how such notices are prepared, approved,
and added to the product manual or other form of documentation.

Figure 9. The role of the documentation team in updating the product documentation,

reflecting the presence of open source in the product

The process starts with the compliance officer preparing the draft of
the written offer, license, copyright and attributions notices for all open

59

Open Source Compliance in the Enterprise

source software in the product (or software stack). Next, the legal counsel
reviews the draft proposed by the compliance officer, provides modification
proposals if needed, and pushes the final version to the documentation
team. The last step of the process is including the final text in the product
documentation.

LOCALIZATION
The localization team is responsible for translating basic language that
informs users of the availability of open source software in the product and
directs them to the proper notices made available in English.

SUPPLY CHAIN
Supply chain (software procurement) procedures must be updated to
address the acquisition and use of open source. It is highly recommended
that you examine software supplied to you by third party software providers.

Supply chain personnel are usually involved in moving software from
the suppliers to your company. Supply chain can support open source
compliance activities by mandating that third party software (and hardware)
providers disclose any open source that is being delivered with their wares,
and by assisting with licensing-in third party software that is bundled with
and/or integrates open source packages.

A best practice in this area is to mandate that third party software providers
disclose any open source used in their offering, along with a statement on
how they plan to meet the applicable open source license obligations. If
third party software includes open source, supply chain must ensure that
open source license obligations are satisfied, since, after initial ingress,
those obligations become your responsibility as distributor of a product or
service that includes open source. It is not acceptable to point “upstream”
to a supplier and to inform recipients of your code that meeting license
obligations was the responsibility of the supplier instead of your own.

60

Open Source Compliance in the Enterprise

IT
IT provides support and maintenance for the tools and automation
infrastructure employed by a compliance program. This responsibility
spans the servers hosting the various tools, the tools, mailing lists, and web
portals. In addition, IT may receive requests from the OSRB to develop and/
or acquire tools that will be used to improve effectiveness and automation of
the compliance activities.

CORPORATE DEVELOPMENT
Corporate Development is involved with open source compliance in two major
scenarios: mergers and acquisitions transactions, and outsourced development.

Mergers and Acquisitions

If a company is considering a merger or is the target of an acquisition, it should
structure its compliance program to offer a level of disclosure and provide
representations. Company policies regarding merger and acquisition transactions
need to be updated to account for open source. Corporate Development
must mandate that source code be evaluated from a compliance perspective
prior to any merger or acquisition to avoid surprises that might derail discussions
or affect the company’s valuation. For the acquiring company, comprehensive
code evaluation assures accurate valuation of software assets and mitigates
the risk of unanticipated licensing issues undermining future value. In addition,
the acquiring company may include provisions in the purchase agreement
requiring the disclosure of open source that is subject to the transaction.

Diligence practices should be updated to require open source disclosure and
include guidance regarding the review of any disclosed open source and licenses.

Chapter 13 is dedicated to the discussion of open source audits that occur
as part of an M&A transaction.

Outsourced Development

Agreements relating to outsourced development of software should also
be updated to reflect compliance procedures and to ensure that other

61

Open Source Compliance in the Enterprise

provisions of these agreements (such as representations and warranties)
are broad enough to cover any potential risks posed by specific use case
of incorporating open source. Corporate Development must mandate that
all source code received from outsourced development centers must go
through the compliance process to discover all open source being used and
to ensure proper actions to fulfill license obligations.

Other Corporate Transactions

Corporate Development is also involved with compliance in transactions
such as spin-offs and joint ventures. In some cases, the compliance due
diligence may result in a decision not to proceed with the transaction, if
that the compliance situation proves far from ideal or even risky if the other
parties have poor compliance practices.

62

Open Source Compliance in the Enterprise

Chapter 4
OPEN SOURCE COMPLIANCE PROCESS

Implementation of open source compliance processes can vary across
organizations based on a number of factors including the underlying
development processes into which compliance must fit, the size and nature
of the code base, the number of products or services involved, the amount
of externally supplied code, the size and organizational structure, and many
more. However, the core elements of compliance usually remain the same:
identifying the open source in the code base, reviewing and approving its
use, and satisfying obligations.

This chapter focuses on the core elements of a compliance process. The
result of compliance due diligence is identification of all free and open
source software used in a product intended for external distribution, and a
plan to meet the attendant license obligations. Figure 10 offers a high-level
overview of a sample end-to-end compliance process.

Figure 10. Simplified view of the compliance end-to-end process

Throughout this chapter, we discuss the phases of a compliance process,
their inputs and outputs. In addition, we examine how we can manage
software usage via a compliance process.

63

Open Source Compliance in the Enterprise

EFFECTIVE COMPLIANCE
The term due diligence refers to a number of concepts involving source
code inspection, source code surveillance, or the performance of quality
duties and system audits. In the case of open source compliance, due
diligence is required to ensure the following:

•	 Open source software used in the product has been identified,
reviewed, and approved

•	 Product implementation includes only approved open source
components and licenses.

•	 All obligations related to the use of licensed material have been identified

•	 Appropriate notices have been provided in documentation, including
attributions and copyright notices

•	 Source code, including modifications (when applicable), has been
prepared and is available at the time the product ships

•	 Verification of all the steps in the process to ensure correctness

There are great benefits to having an end-to-end compliance process that is
simple and well understood within the organization. Such a process would:

•	 Enable organizations to benefit from open source while complying
with obligations

•	 Move open source use from ad hoc to a standardized process that
is well understood and followed

•	 Help manage acquisition of open source code via third party providers

•	 Help employees understand how to work with open source in a
responsible way

•	 Improve the relationship with developers in the various open source
projects used by your organization

64

Open Source Compliance in the Enterprise

•	 Accelerate exchange of information and ideas with the project
communities of integrated code through upstreaming any source
code modifications

•	 Speed innovation, since the organization is able to safely adopt
open source components and use them as enablers for new
services and products

ELEMENTS OF AN END-TO-END COMPLIANCE
PROCESS
Figure 11 (next page) illustrates the ten key steps in an end-to-end
compliance process:

1.	 Identification of incoming source code

2.	 Auditing source code

3.	 Resolving any issues uncovered by the audit

4.	 Completing appropriate reviews

5.	 Receiving approval to use open source

6.	 Registering open source in the software inventory

7.	 Updating product documentation to reflect open source usage

8.	 Performing verification of all previous steps prior to distribution

9.	 Distributing source code packages

10.	 Performing final verifications in relation to distribution

65

Open Source Compliance in the Enterprise

Figure 11. End-to-end compliance process

The remainder of this chapter will address each of these ten steps in detail.

Step 1 – Identification of Open Source

The goal of this initial step is to monitor the ingress and incorporation of
open source in a software portfolio, regardless of whether that incorporation
was as a standalone package or embedded within third party or company-
developed software. There are several methods to identify open source
used in the product:

•	 A request to use open source: This is the most common method
for identifying the usage of open source in a product. Engineering
staff or Product Management staff are required to inform the Open
Source Review Board (OSRB; described in Chapter 3) or the
compliance team of their intent to use open source in a specific product
or platform release. The submitter provides information regarding the
intended use of the open source package for review and approval.

•	 Auditing the full platform or product code base to establish a
compliance baseline, and then auditing code modules that have
changed in subsequent releases or those that have entered the
code base.

•	 Third party due diligence: This involves requiring a full disclosure
of open source components and snippets provided by third party

66

Open Source Compliance in the Enterprise

suppliers, with an accompanying review of the disclosure by the
open source compliance team. In some cases, it will make sense
to require third party software vendors to provide an audit of the
supplied code as an additional layer of diligence. This helps ensure
you are controlling the intake of open source.

•	 Auditing proprietary (company-developed) software components: In
some instances, engineers may decide to copy/paste source code
from open source components and include it in proprietary software
components. Therefore, it is important to audit company-developed
software components, since they may include open source code,
which may lead to compliance failures if not discovered before
product ship date.

•	 Inspect all open source components and snippets entering the
organization source code repository that do not correspond to an
incoming request to use open source: Relying on engineers to fill
out forms announcing their intent to use open source is not always
a reliable method to account for all incoming open source software.
Therefore, as a backup, we recommend setting up a source
code control system with a separate folder for open source and a
notification alert any time there is a check-in to this master folder.
Since it is always a recommended practice to separate open source,
company-developed proprietary software, and third party software
in different folders in your build system, it becomes feasible to set up
alerts when new code is being submitted. If a submitted does not
correspond to an existing usage form (open source request form),
then it is a new component (or a newly introduced snippet) and
requires that a new form be filled out.

Identification phase prerequisite

One of the following conditions is met:

•	 An incoming OSRB form requesting using a specific open source

•	 Discovery of open source code used (without proper authorization)
via a complete platform scan

67

Open Source Compliance in the Enterprise

•	 Discovery of an open source being used as part of third party
software

Identification phase outcome

•	 A compliance record is created (or updated) for the open source

•	 An audit is requested to scan the source code

Step 2 – Auditing Source Code

The second step in compliance due diligence consists of scanning the
source code using automated analysis tools to discover matches with
known open source projects. The auditing personnel perform a source
code scan iteratively from one release to another. The goal of this exercise
is to build a chain of evidence that proves what is included in the release is
compliant with the various applicable open source licenses.

•	 The goals of the audit are to:

•	 Update the release bill of materials to account for any open source
added (or removed) since the last previous scan

•	 Confirm the origin(s) of the source code, including the provenance of
any open source

•	 Flag any dependencies, code matches, and licensing conflicts

Auditing phase prerequisite

A compliance record (also called a ticket) is created capturing all information
about the usage of that specific open source and providing the location of
the source code within the internal build system. In some cases, specifically
when a full platform scan is done, an open source component may be
scanned before having a proper compliance report. In this case, a record is
created when the component is discovered.

68

Open Source Compliance in the Enterprise

Auditing phase outcome

•	 An audit report identifying the origins and licenses of the scanned
source code

•	 Change request tickets are filed against the appropriate engineering
team for any issues identified during the audit that require
engineering rework

Figure 12 illustrates the actions that can trigger a software audit.

69

Open Source Compliance in the Enterprise

Figure 12. Triggers leading to the identification and audit request for incoming new code

70

Open Source Compliance in the Enterprise

Step 3 – Resolving Issues

In this step of the process, all issues identified during the auditing step are
resolved. The OSRB Chair monitors closure of tickets assigned to engineers
during the Audit step. Once the engineers have resolved the identified
issues, the OSRB Chair should request a new audit to confirm that the
resolved issues no longer exist.

Resolving Issues phase prerequisite

A source code scan has been completed, and an audit report is generated
identifying the origins and licenses of the source code. The report has
flagged source code files that were not identified, or possible license
conflicts resulting from mixing source code incoming under different
licenses. The Compliance Officer will drive the effort to resolve these issues.

Resolving Issues phase outcome

A resolution for each of the flagged files in the report and a resolution for
any flagged license conflict.

Step 4 – Reviews

Once the auditing is complete and all issues identified earlier have been
resolved, the compliance ticket for a specific software component or
snippet moves in the process to the review phase. Figure 13 (next page)
illustrates the various reviews performed on a given compliance ticket. The
reviewers need to understand the licenses that govern use, modification,
and distribution of the source code in question, and identify the obligations
of the various licenses. For any given software component or snippet, the
reviewers of the compliance ticket are:

•	 Internal package owner (the developer working on specific source
code component)

•	 Source code scanning or auditing personnel

•	 OSRB (Open Source Review Board), which includes OSRB chair

71

Open Source Compliance in the Enterprise

(Compliance Officer), Legal counsel, and OSRB engineering
representative

•	 OSEC (Open Source Executive Committee) in the event the
company will open source proprietary source code.

Figure 13. Reviewers of the compliance ticket and their roles

As part of this step of the compliance process, there are two important
reviews: the architecture review and the linkage analysis review.

72

Open Source Compliance in the Enterprise

Architecture Review

The goal of the architecture review is to analyze any interactions between
the open source, third party, and proprietary code. The result of the
architecture review is an analysis of the licensing obligations that may
extend from the open source components to the proprietary components
(and vice versa). The internal package owner, the OSRB engineering
representative, and the open source expert usually perform the architecture
review. If they identify a dependency resulting in a licensing conflict, the
OSRB Chair will issue a ticket to Engineering to resolve the identified
problem by reworking the source code..

Linkage Analysis Review

The goal of a linkage analysis review is to find potentially problematic code
combinations at the static and dynamic link level, such as linking a GPL
or more commonly an LGPL-licensed library to a proprietary source code
component. The OSRB Chair performs this review using an automated tool.
Similarly to the architectural review, any linkage conflicts are reported to
Engineering to resolve.

Review phase prerequisite

Source code has been audited and all issues have been resolved.

Review phase outcome

OSRB members perform an architecture review and a linkage analysis for
the specific component and mark it as ready for approval.

Step 5 – Approvals

Once reviews are completed, the compliance ticket moves to the approval
step, where the OSRB will either approve it for usage or reject it with
explanation and a possible proposal on how to fix that. For most software
components, the OSRB grants approval once a ticket has progressed that
far in the process.

73

Open Source Compliance in the Enterprise

Once the OSRB approves the usage of an open source component,
the OSRB communicates the approval to the product teams so they
understand their responsibilities and begin preparations to fulfill the license
obligations. If the OSRB rejects the use of the open source component,
they communicate the reason for rejection to the requester, and this
information is recorded as part of the compliance ticket. As a result, the
open source component cannot be used in the product, although the
requester can consider submitting an appeal for reconsideration by the OSRB.

Approvals phase prerequisite

All OSRB members have reviewed the compliance ticket, and the OSRB
has completed the architecture review and linkage analysis.

Approvals phase outcome

Approve or reject the use of the specific component or snippet with
explanation of the reason and possibly a proposal to reverse the decision
when it’s a rejection.

Step 6 – Registration

Once the OSRB approves a software component for use in a product or as
part of a service, its compliance ticket will be updated to reflect the approval.
The component (or in some case snippets, or part of a component) is
added to the software inventory that tracks open source use and use cases.

Companies that follow a conservative approach with their compliance
practices, you would approve open source software for a specific version
and usage in a specific product or service version. If a new version of this
open source software becomes available, companies usually require a new
approval to ensure that the usage model and even the license are still in line
with the internal policy.

Registration phase prerequisite

The OSRB has approved the component’s usage in the product.

74

Open Source Compliance in the Enterprise

Registration phase outcome

The component is registered in the software inventory, with the component
name, version, internal owner, and the details of where the component is
being used, such as product name, version, release number, etc.

Step 7 – Notices

One of the key obligations when using open source is the documentation
obligation also referred to as the notice obligation. Companies using open
source in an externally distributed product or service must:

•	 Inform the end user how to obtain a copy of the source code that’s
been made available as a result of meeting the license obligations
(when applicable)

•	 Acknowledge the use of open source by providing required
copyright, attribution, and license notices for all applicable open
source software (components and snippets)

•	 Reproduce the entire text of the license agreements for the open
source code included in the product

If companies are non-compliant with open source license obligations, they
are exposed to possible legal action by the copyright holder for copyright
infringement, and can potentially lose the right to use and distribute
the software in question. In order to fulfill documentation obligations,
appropriate notices must be included with the product. In this step of the
compliance process, the OSRB Chair prepares the notices and passes
them to the appropriate departments for fulfillment.

Notice phase prerequisite

The OSRB has approved the use of the open source code and registered in
the software inventory.

75

Open Source Compliance in the Enterprise

Notice phase outcome

The license, copyright, and attribution notices for are prepared and
passed to the appropriate departments to be included in the product
documentation.

Step 8 – Pre-Distribution Verifications

The next step in the compliance process is to decide on the method and
mode of distribution, type of packages to distribute, and mechanism of
distribution.

•	 The goals of the pre-distribution verification are to ensure that:

•	 Open source packages destined for distribution in fulfillment of
license obligations have been identified and approved

•	 Source code packages (including modifications) have been verified
to match the binary equivalent shipping in the product

•	 Appropriate notices have been included in the product
documentation to inform end-users of their right to request source
code for identified open source

•	 All source code comments have been reviewed and any offending
or inappropriate content has been removed. This is not strictly a
compliance issue; however, in some cases, an innocent comment
about where the code was received can trigger a larger compliance
question.

Pre-Distribution Verifications phase prerequisites

•	 The OSRB has approved the component or snippet for usage.

•	 It has been registered in the software inventory.

•	 All notices have been captured and sent for fulfillment.

76

Open Source Compliance in the Enterprise

Pre-Distribution Verifications phase outcome

•	 Decide on distribution method and mode.

•	 Ensure that all the pre-distribution verifications have been completed.

Step 9 – Distribution

Once all pre-distribution verifications have been completed, it is time to
upload the open source packages to the distribution website.

Packages will be labeled with the product and version it corresponds to (this
scenario assumes that you have chosen this method to make source code
available; other methods are discussed in a later chapter). Note that this
action is helpful to those desiring code download but may not be sufficient
by itself to satisfy license obligations. Furthermore, a recommended practice
is to provide email and postal mail contact information for any compliance
or open source-related questions.

Distribution phase prerequisite

All pre-distribution verifications have been checked and no issue discovered.

Distribution phase outcome

The source code of the component in question is uploaded to the website
for distribution (if that is the distribution method of choice).

Step 10 – Final Verifications

Once you upload the open source packages to the distribution website,
validate that the packages have been uploaded correctly and can be
downloaded and uncompressed on an external computer without errors. If
you are providing a patch, ensure that it applies cleanly and that you have
specified the proper version of the upstream component.

77

Open Source Compliance in the Enterprise

Final verifications phase prerequisite:

The source code is published on the website.

Final verifications outcome

You receive verification that the source code is uploaded correctly and
accessible for download, and that it corresponds to the same version that
was approved.

78

Open Source Compliance in the Enterprise

Chapter 5
COMPLIANCE PROCESSES AND POLICIES

For the purpose of this book, the focus of the discussion is using and
integrating open source with proprietary and third party source code in a
commercial product. The discussions exclude policies and processes for
using open source solely inside your organization for testing and evaluation
purposes. This chapter discusses usage policy and process in addition to
the base and incremental compliance process, and guidelines for achieving
incremental compliance.

POLICY
The usage policy is an essential building block in a compliance program.
This policy does not have to be lengthy or complicated. A simple policy can
be effective as long as it mandates the following basic rules or principles:

•	 Engineers must receive approval from OSRB before integrating any
open source in a product.

•	 All software must be audited and reviewed, including proprietary
software components, software received from third party providers,
and open source software, to ensure license obligations can be
fulfilled before product ships.

•	 Product must fulfill open source licensing obligations prior to
customer receipt.

•	 Approval to use open source code for one product is not a blanket
approval to use that code in every possible context. Approvals
are given on a case by case. If engineers want to re-use the open
source code for another deployment, a new approval is required.

•	 All changed open source components and snippets must go
through the approval process. This requirement arise from the
fact that some projects change licenses with new releases and

79

Open Source Compliance in the Enterprise

downstream users of the code need to be aware of such changes
and not assume the same license is still in effect.

These rules ensure that any software (proprietary, third party, open source)
that makes its way into the product base has been audited, reviewed, and
approved. Furthermore, it ensures that the company has a plan to fulfill the
license obligations resulting from using software originating from multiple sources.

PROCESS
The compliance usage process includes scanning the source code of the
software package in question, identifying and resolving any discovered
issues, performing legal and architectural reviews, and making a decision
regarding the usage approval for a given software package.

Figure 14 illustrates a simplistic view of a compliance usage process. This
figure does not demonstrate the iterative nature of such a process; a more
elaborate view is provided in Figure 17 (page 89).

Figure 14. A sample compliance usage process

Source Code Scan

In the scanning phase, all the source code is scanned using a source
code scanning tool. Chapter 13 offers a detailed discussion on the various
metrics to use and look for when evaluating such tools.

Figure 15 illustrates some of the factors that can trigger a source code scan.

80

Open Source Compliance in the Enterprise

Figure 15. Events that trigger a source code scan

The triggers include:

•	 An incoming usage form from engineering staff: A developer fills out
the OSRB usage form to provide basic information about the source
code in question they intend to use. Upon the submission of the
form, a compliance ticket (in a system such as JIRA or Bugzilla) will
be created automatically, and a source code scan request will be
sent to the auditing staff.

•	 A periodically scheduled full-platform scan: Such scans are very
useful to uncover open source that may have snuck into your
software platform without an OSRB form.

•	 Changes in previously approved software components: In many
cases, engineers start evaluating and testing with a certain version
of an OSS component, and later adopt that component when a new
version is available.

81

Open Source Compliance in the Enterprise

•	 Source code received from a third party software provider who may
or may not have disclosed open source.

•	 Source code downloaded from the web with unknown author and/or
license, which may or may not have incorporated open source in it.

•	 A new proprietary software component entering the build system
where engineering may or may not have incorporated open source
into it.

In preparation for legal review, the individual who runs the source code scan
should attach to the compliance ticket all the license information found
in the package, such as any COPYING, README, or LICENSE files, in
addition to any files stating copyright and attribution notices.

Identification and Resolution

In the identification and resolution phase, the auditing team inspects and
resolves each file or snippet flagged by the scanning tool.

Legal Review

In the legal review phase, the legal counsel reviews reports generated by
the scanning tool, the license information of the software component, and
any comments left in the compliance ticket by engineers and members
of the OSRB. If there were no issues with the licensing, the legal counsel
would then decide on the incoming and outgoing licenses of the software
component, and would forward the compliance ticket into the compliance
architectural phase. If a licensing issue is found, for example mixed source
code with incompatible licenses, the legal counsel will flag these issues and
reassign the compliance ticket to Engineering to rework the code. In some
cases, if the licensing information is not clear or if it is not available, the legal
counsel contacts the project maintainer or the open source developer to
clarify the ambiguities and to receive a confirmation of the license under
which that specific software component is licensed.

82

Open Source Compliance in the Enterprise

Architecture Review

In the architecture review, the compliance officer and the engineering OSRB
representative perform an analysis of the interaction between the open
source, proprietary, and third party code.

This is accomplished by examining an architectural diagram that identifies:

•	 Open source components (used “as is” or modified)

•	 Proprietary components

•	 Components originating from third party software providers

•	 Component dependencies

•	 Communication protocols

•	 Other open source packages that the specific software component
interacts with or depends on, especially if they are governed by a
different open source license

The result of the architecture review is an analysis of the licensing
obligations that may extend from open source to proprietary or third party
software components (and across open source components as well). If
the compliance officer discovers any issues, such as proprietary software
component linking to a GPL licensed component, the compliance officer
forwards the compliance ticket to Engineering for resolution. If there are no
issues, then the compliance officer moves the ticket to the final stage in the
approval process.

Final Review

The final review is usually an OSRB face-to-face meeting during which
the OSRB approves or denies usage. In most cases, if a software
component reaches the final review, it will be approved unless a condition
has presented itself (such as the software component no longer being in
use). Once approved, the compliance officer will prepare the list of license
obligations for the approved software component and pass it to appropriate
departments for fulfillment.

83

Open Source Compliance in the Enterprise

PROCESS STAGES’ INPUTS AND OUTPUTS
In this section, we discuss the inputs and outputs of each of the five phases
in the OSRB usage process, as illustrated in Figure 16. Please note that
these phases are for illustration purposes and may not be the same as the
steps in your specific scenario.

Figure 16. Inputs and outputs of the usage process

84

Open Source Compliance in the Enterprise

Source Code Scan Phase

Input

The input to the scan phase is the usage form that an engineer has filled
out online and submitted. Table 6 (on page 99) provides details on the form.
It includes all information about the open source component in question,
in addition to the location of the source code. Periodic full-platform scans
should also take place every few weeks to ensure that no open source
software component or snippet has been included into the code base
without a corresponding OSRB form.

Output

The output from the scan phase is a report produced by the source code
scanning tool.

•	 The report provides information on:

•	 Known software components and open source snippets in use, also
better described as the software Bill of Materials (BoM)

•	 Licenses in effect, license texts and summary of obligations

•	 License conflicts (to be verified by legal) as flagged by the tool

•	 File inventory

•	 Identified files

•	 Dependencies

•	 Code matches

•	 Files and source code matcher pending identification

85

Open Source Compliance in the Enterprise

Identification and Resolution Phase

Input

The input to this phase is the report generated by the scanning tool in the
previous phase. The report flags issues such as conflicting and incompatible
licenses. If there are no issues, then the compliance officer will move the
compliance ticket forward to the legal review phase. If there are issues
to be resolved, then the compliance officer creates subtasks within the
compliance tickets and assigns them to the appropriate engineers to be
resolved. In some cases, a code rework is needed; in other cases, it may
simply be a matter of clarification. The subtasks should include a description
of the issue, a proposed solution to be implemented by engineering, and a
specific timeline for completion.

Output

The output is the resolution of all issues. The compliance officer may request a
new scan of the code to confirm that earlier issues have been resolved. The
compliance officer then forwards the compliance ticket to the representative
from the Legal department for review and approval.

Legal Review Phase

Input

When a compliance ticket reaches the legal review phase, it already contains:

•	 A scan report is attached to the compliance ticket.

•	 A confirmation from engineering and the compliance officer that all
discovered issues during the source code scan has been resolved.

•	 Copies of the license information attached to the ticket: Typically,
the compliance officer attaches the README, COPYING, and
AUTHORS files available in the source code packages to the
compliance ticket. Other than the license information, which
for open source software components are usually available in a

86

Open Source Compliance in the Enterprise

COPYING or a LICENSE file, you need to capture copyright and
attribution notices as well. This information will provide appropriate
attributions in your product documentation.

•	 Feedback from the compliance officer regarding the compliance
ticket (concerns, additional questions, etc.).

•	 Feedback from the engineering representative in the OSRB or from
the engineer (package owner) who follows/maintains this package
internally.

Output

The output of this phase is a legal opinion, and a decision on the incoming
and outgoing license(s) for the software component in question. The
incoming and outgoing licenses are in the plural form because in some
cases, a software component can include source code incoming from
multiple source and available under different licenses.

Incoming and outgoing licenses

The incoming license is the license under which the company receives the
software component or snippet. The outgoing license is the license under
which the company is licensing (or relicensing) the software component or snippet.

In some cases, when the incoming license is a permissive license that
allows relicensing, companies will relicense that software under their own
proprietary license.

A more complex example would be a software component that includes
proprietary source code, source code licensed under License-A, source
code that is available under License-B, and source code available under
License-C. During legal review, the legal counsel will need to decide on the
incoming and outgoing license(s):

Incoming licenses = Proprietary License + License A + License B + License C
Outgoing license(s) = ?

87

Open Source Compliance in the Enterprise

Architecture Review Phase

The goal of the architecture review is to analyze the interactions between
the open source code and third party and proprietary code. The result of
the review is an analysis of the licensing obligations that may extend from
the open source components to the proprietary components. The internal
package owner, the OSRB engineering representative, and the Compliance
Officer usually perform the architecture review. If they identify a licensing
conflict, the Compliance Officer issues a ticket to Engineering to fix the issue.

Input

Source code has been audited and all issues have been resolved.

Output

OSRB members perform an architecture review for the specific component,
and mark it as ready for the next step (i.e., Final Approval) if no issues were
uncovered during the architecture review.

Final Approval Phase

Input

The input to this phase is the complete compliance record of the software
component, which includes the following:

•	 A source code scan report generated by the scanning tool.

•	 The list of discovered issues, information on how they were resolved,
and who verified that these issues were successfully resolved.

•	 Architectural diagrams and information on how this software
component interacts with other software components.

•	 Legal opinion on compliance, and decision on incoming and
outgoing licenses.

88

Open Source Compliance in the Enterprise

•	 Dynamic and static linkage analysis, if applicable in an embedded
environment (C/C++).

Output

The output of this phase is a decision to either approve or deny the usage
of the software component.

DETAILED USAGE PROCESS
Many possible circumstances can affect compliance procedures. Figure 17
(next page) provides a detailed process that highlights several possible scenarios,
and how to move from one step to another in the process. We then discuss eight
possible scenarios. These scenarios are not mutually exclusive and are not the only
possible scenarios; however, we use them for illustration and discussion purposes.

The scenarios illustrated in Figure 17 (next page) are the following:

Scenario 1: The source code is 100% proprietary. The audit team did not
find any open source code.

Scenario 2: The source code includes open source code from multiple
sources with incompatible licenses.

Scenario 3: Linkage issue were identified during architectural review.

Scenario 4: A source code package is not used anymore.

Scenario 5: Due diligence identified IP that will be released to meet license
obligations.

Scenario 6: An issue was identified during the verification phase that needs
to be resolved.

Scenario 7: Source code is approved for use.

Scenario 8: Source code is rejected.

89

Open Source Compliance in the Enterprise

Figure 17. Specific compliance scenarios

90

Open Source Compliance in the Enterprise

Scenario 1: Source code is 100% proprietary

The scanned software component is 100% proprietary code, and no open
source code is declared or identified. In this case, we assume the fast track,
and the compliance ticket for that specific component will be forwarded
for legal review. The legal counsel decides on the license to attach to this
proprietary component, and forwards it to the compliance officer to perform
architectural and linkage analysis.

Scenario 2: Incompatible licenses

The scanned software component includes source code that originated from
multiple sources with incompatible licenses. Another example would be a
software component with a mix of proprietary source code and source code
licensed under the GPL. In this scenario, the scan report is attached to the
compliance ticket and assigned to the developers with a request to rework the
code by removing the GPL source code from the proprietary software component.

Once the developer reworks the code, the software component will be
scanned again to verify that the GPL code has been removed before the
ticket proceeds for legal review.

Scenario 3: Identified issue with linkages

In this scenario, the compliance ticket has passed legal review and is now
in the architectural and linkages review. The compliance officer discovers a
linkages issue. In this case, the compliance officer moves the compliance
ticket back into the resolution phase, assigning it to a developer to resolve
the linkage issue.

Scenario 4: Source code no longer used

In this scenario, Engineering decides that a software component is not
going to be included in the product while the software component is in
transit through the compliance process. As a result, its compliance ticket is
closed (rejected). The next time this component is going to be used, it must
go through the compliance process and progress as approved before it is
integrated in the product or service source code base.

91

Open Source Compliance in the Enterprise

Scenario 5: IP at risk of requiring release

In this scenario, legal review uncovered that closely held intellectual property
has been combined with open source code. The legal counsel will flag
this and reassign the compliance ticket to engineering to remove the
proprietary source code from the open source component. In the event
that engineering insists on keeping the proprietary source code in the
open source component, the OSEC will have to approve the release of the
proprietary source code under an open source license.

Scenario 6: Unresolved issue found

In every case, when an OSRB member discovers a compliance issue in the
software component, the component goes through the same life cycle:

•	 Engineering fixes the identified issue.

•	 Auditing team re-scans the source code and provides a new report.

•	 Legal examines the new audit report.

•	 Compliance office ensures that there are no open issues in the
architecture and linkage analyses.

Scenario 7: Source code is approved

Once a software component has received the audit, legal, and compliance
approvals, it will be reviewed during an OSRB meeting. If nothing has
changed in its status — that is, it is still in use, is the same version, and has
the same usage model (Figure 18) — the compliance officer will:

•	 Update the software inventory to reflect that the specific open
source software version x is approved for use in product y, version z.

•	 Issue a ticket to the documentation team to update end user notices
in the product documentation, to reflect that open source is being
used in the product or service.

•	 Trigger the distribution process before the product ships.

92

Open Source Compliance in the Enterprise

Figure 18. Steps accomplished after the OSRB approval

Scenario 8: Source code is rejected

In this scenario, the OSRB decides to reject usage of a specific software
component. There are several reasons that might lead to such a rejection:

•	 The software component is no longer in use.

•	 There are linkage issues that cannot be resolved easily. The decision
is to stop development and design a better solution.

•	 There are license incompatibility issues that cannot be resolved easily.

•	 There are intellectual property issues preventing the use or release of
the specific component.

•	 Other reasons.

93

Open Source Compliance in the Enterprise

INCREMENTAL COMPLIANCE PROCESS
Incremental compliance is the process by which compliance is maintained
when product features are added to a baseline version that has already
completed initial compliance. (Initial compliance, also called baseline
compliance, happens when development starts, and goes until the release
of the first version of the product.) Incremental compliance requires a
comparatively small effort in comparison to the efforts involved in establishing
baseline compliance.

Figure 19 illustrates product development and incremental compliance.

Figure 19. Incremental compliance

In this example, the compliance team identifies all open source included in
the software baseline (here called v 1.0), and drives all of the open source
components through the compliance process. Once the product ships,
development begins on a new branch that includes additional features and/
or bug fixes — in this example, v 1.1.

Several challenges arise with incremental compliance. Specifically, you must
correctly identify the source code that changed between version 1.0 and
version 1.1, and verify compliance on the delta between the releases:

•	 New software components or snippets may have been introduced.

•	 Existing software components or snippets may have been retired.

94

Open Source Compliance in the Enterprise

•	 Existing software components may have been upgraded to a newer
version.

•	 The license on a software component may have changed between
versions.

•	 Existing software components may have code changes involving
bug fixes or changes to functionality and architecture.

The important question is “How can I keep track of all of these changes?”.
The answer is simple: deploy a bill of material difference tool (BOM diff
tool), as discussed in Chapter 7. Briefly, for the purpose of this discussion,
the tool identifies the delta between two BOMs for the same product or
software stack. Given the BOM for product v1.1 and the BOM for v1.0, the
tool computes the delta, and the output of the tool is the following:

•	 New software components added in v1.1.

•	 Updated software components (differences were found in the code
bases of the older and current release).

•	 Retired software components.

With this information, achieving incremental compliance becomes a
relatively easy task:

•	 Added software components should enter the compliance process.

•	 Compute a line-by-line diff of the source code in changed software
components, and decide if a new source code scan is required or not.

•	 Update the software registry by removing the software components
that are not used anymore so they will not appear in the open
source notices for the new software release.

Figure 20 illustrates the incremental compliance process. The BOM files
from the two releases (to be compared) are pulled from the build server,
each corresponding to a different release. The BoM tool computes the delta
to produce a list of changes as previously discussed. At this point, the
compliance officer will create new compliance tickets for all new software

95

Open Source Compliance in the Enterprise

components and snippets in the release, update compliance tickets where
source code has changed and possibly re-run them through the process,
and finally update the software registry to reflect retired software
components from the new release.

Figure 20. Example of an incremental compliance process

OSRB USAGE FORM
Completing the usage form is one of the most important steps when
bringing open source software into a company (ingress), and should be
taken very seriously. Developers fill out the online form requesting approval
to use a given open source software. The form comprises several questions
that will provide necessary information for the OSRB, allowing it to approve
or disapprove the usage of the proposed open source component.

96

Open Source Compliance in the Enterprise

Table 6. Information requested as part of the OSRB usage form

Field Description

Submitter
Information	

Company ID of employee submitting the form (facilitating
retrieval of employee name, phone, email, manager,
location, and team from a company directory)

Open Source Code
Information	

Package name, version, website, short description

Software class: open source, internally developed, third- party

License name, version, and license website

Software category: OS/kernel, driver, middleware, library,
utility, other (explain), etc.

Benefits of using the OSS component

Alternatives to using the component/package

Consequences of not using the software Location of the
software in the SCMS

Use Case Internal (tools, IT, etc.)

Distributed as part of a product

Enabling an outward-facing service

Modification Modified (Y/N)?

Includes company IP?

Exposes IP?

Table 6 highlights the information requested in a usage form. Usually, these
values are chosen from a pull-down menu to make the data entry efficient.

Note on Downloaded Open Source Packages

It is vital to archive open source packages downloaded from the web in their
original form. These packages will be used in a later stage (prior to distribution)

97

Open Source Compliance in the Enterprise

to verify and track any changes introduced to the source code by computing
the difference between the original package and the modified package.

If a third party software provider uses open source, the product team
integrating that code into the product must submit an OSRB usage
covering the open source code used by the third party software provider.

If the third party software provider delivers only binaries, not source code,
then the company must obtain a confirmation (for instance, a scan report)
from them in a disclosure format that list all open source code used in those
binaries along with a statement that insures compliance in terms of notices
and source code availability (when applicable).

Note on Architecture Diagram

The architectural diagram illustrates the interactions between the various
software components in an example platform. Figure 21 (next page)
provides an architectural diagram template that companies can use to
model the interactions of various software components and understand
their relationship. It covers:

•	 Module dependencies

•	 Proprietary components

•	 Open source components (modified versus as-is)

•	 Dynamic versus static linking

•	 Kernel space versus user space

•	 Shared header files

•	 Communication protocols

•	 Other open source components that the software component in
question interacts with or depends on, especially if it is governed by
a different open source license

98

Open Source Compliance in the Enterprise

Figure 21. Template for architectural diagram (applies to an embedded environment that

relies on C or C++)

Rules Governing the OSRB Usage Form

There are several rules governing the OSRB usage form. Here are a few:

•	 The form applies only to the usage of open source in a specific
product and in a specific context. It is not a general approval of the
open source code for all use cases in all products.

•	 Developers should update and resubmit the usage form whenever
the plans for that open source component or snippet change.

•	 The OSRB must approve the form before engineering integrates the
open source code into the product build.

•	 The form is the basis of audit activity and provides information
the OSRB needs to verify if the implementation is consistent with
the usage plan expressed in the form, and with the audit and
architectural review results.

99

Open Source Compliance in the Enterprise

AUDITING
Good audit practices ensure a thorough understanding of the provenance
of all software that will be incorporated in a product, software stack, or
a web based service. With this understanding comes the ability for your
organization to meet its open source software license obligations.

The auditing policy is usually simple and straightforward: All source code
must be audited and have an audit report attached to its compliance
ticket. The audit process consists of the workflow that requests follow after
engineering has submitted an OSRB usage form for a specific software
component or snippet.

Figure 22: Basic audit process

The audit process illustrated in Figure 22 (previous page) consists of the
following phases:

•	 Receive the OSRB usage form, which includes the location of the
source code to audit.

•	 Perform a scan of the source code.

•	 Perform analysis of components and snippets flagged by the
scanning tool as unknown or unclear source and/or license. These
typically need to be identified manually by a compliance engineer.

•	 Produce final report covering the software BoM for all scanned code.

100

Open Source Compliance in the Enterprise

SOURCE CODE DISTRIBUTION
The distribution policy and process have two primary goals:

•	 Inform customers that the product or the service contains open source
software, and notify them of their rights to receive the source code
when applicable.

•	 Ensure the correctness of the source code distributed in fulfillment
of open source license obligations.

Distribution Incentives

There are three major business incentives to distribute open source code:

•	 Meeting license obligations,

•	 Contributing enhancements to an open source project, and

•	 Creating and contributing code to a new open source project.

In the next sections, we explore each of these cases and the motives driving
the distribution or publication of the source code.

Meeting License Obligations

In this instance, the organization has incorporated open source software
into a product or service, and due to the licenses involved, they now have
the obligation to make source code available, including any modifications
to it. The organization then compiles its open source BoM, and publishes
all notices and required source code. We informally refer to this distribution
model as a one-way distribution, versus a two-way that involves full community
interaction to incorporate the modification back into the upstream branch.

Contributing modifications to an existing open source project

In some cases, the open source license does not include an obligation to
make modifications available for license compliance purposes. However,
organizations may consider releasing their modifications and possibly

101

Open Source Compliance in the Enterprise

upstreaming them to reduce technical debt, or, in other words, to reduce
the cost of maintaining those modifications internally and to remain
synchronized with the upstream branch. This is an example of a source code
distribution (or publication) that is not motivated by compliance obligations.

Creating a new open source project

Organizations may have a business need to create a new open source
project and contribute source code to it. This case is different from contributing
source code (in the form of bug fixes or new feature implementation) to an
existing open source project.

Distribution Policy and Process

The goal of a distribution policy is to govern the process of supplying source
code and to provide guidelines on the various logistical aspects of meeting
open source license obligations. The distribution policy applies to any
software where the license requires redistributing source code, and it covers
the publication process, publication methods, modes, and checklists.

Prior to triggering the distribution process, you need to decide on the
method and mode of providing source. Subsequently, the process begins
with preparing source code for external distribution, following a pre-
distribution checklist, ensuring source code package availability, and then
completing the post- distribution checklist.

Figure 23 illustrates a sample distribution process. It includes:

•	 Deciding on the source code distribution method

•	 Deciding on a distribution mode

•	 Preparing the source code packages for distribution

•	 Completing a pre-distribution checklist to ensure that all prior
steps have been successfully completed and that the source code
packages are ready for external distribution

102

Open Source Compliance in the Enterprise

•	 Executing the distribution by hosting the source code packages on
a publically accessible web site

•	 Completing a post-distribution checklist to capture any possible
errors that took place as part of the distribution process

Figure 23. Sample distribution/publication process

103

Open Source Compliance in the Enterprise

Distribution Methods and Modes

There are three main distribution methods for making source code
packages available: instant compliance, online distribution and on-demand
distribution. We will discuss each of these methods in the following sections.

Instant Compliance Method

Following this distribution method, you provide the code when or shortly
after your product or software stack ships, and make it made available to
anyone who wishes to get it, typically via a website download. This is the
preferred method of distribution for developers (and compliance enforcers),
as it gives them direct access to the source code without having to pass the
eligibility requirement (i.e., for instance they do not need to buy the product
to be eligible to receive the source code).

There are two possible drawbacks to consider when choosing this method
of distribution. Firstly, depending on the amount of open source code
involved, it may require a lot of effort to package all source code and make
it available on the website by the date the product ships, at a time when all
hands are on deck getting the product out the door. Secondly, you will be
building up an expectation that future code distributions will use this method
as well. This is a very high expectation to meet every single time.

Online Supply Method

Following this distribution method, you provide exclusive access to your
customers only, as they are the only entities eligible to receive the source
code. Companies can manage this method via a secure website that
requires a certain authentication on the part of the client to access and
download the source code packages.

On-demand Distribution

The on-demand distribution method is a variation of the online supply
method in which companies rely on the written offer (in the case of the
GPL/LGPL family of licenses) to communicate to their clients how they can
request or access the source code. Some organizations prefer to have

104

Open Source Compliance in the Enterprise

a written request, sent to a corporate email address or a postal address
(specified in the written offer), the result of which is that the client receives a
copy of the source code, after the verification of their eligibility.

This compliance method often gives the organization additional buffer
time to finish packaging the source code after the product has shipped.
However, it is not regarded as a preferred method of distribution, due to
the overhead of verifying the eligibility of the people asking to access the
source code and the resources required to fulfill the requests. In addition,
with the specific cases of the GPL/LGPL family of licenses, the written offer
to access the source code must be valid for three years. Therefore, you will
need to administer the distribution of the code for at least three years from
the date you have last shipped your product. If you opt for providing the
source code on a CD-ROM/DVD, this will introduce some additional cost
to you and additional verification steps to ensure the correctness of the
process of burning the CD-ROM/DVD containing the source code packages.

Distribution Checklists

There are many checkpoints for validating the open source packages before
they make their way to the website for public consumption. Moreover,
validation is required after source code becomes publicly available. Below
we outline the checklist of the pre- and post- distribution process.

Pre-Conditions for Distribution

The following is a list of conditions that should be met before source code
packages are ready for distribution:

•	 The open source package or snippet has been approved for use.

•	 The product containing the open source software is ready to ship or
has shipped already.

•	 If you are publishing GPL/LGPL code available, ensure you are
providing and documenting the modifications you have introduced.

105

Open Source Compliance in the Enterprise

You have performed a linguistic review. Although this is not compliance-
related, there have been issues in the past related to future product code-
names used, obscene or vulgar language, and references to individuals,
email addresses, and/or internal URLs left in the code. All such mentions
should be cleaned up.

Pre-Distribution Checklist

The following is a sample checklist to follow before publishing or distributing
source code:

•	 Verify that Engineering have documented their modifications to open
source package as part of the change log.

•	 Ensure that each modified source code file contains an additional
entry for a copyright notice, disclaimer, and a generic “change log” entry.

•	 Confirm that Engineering has reviewed the contents of the source
code package have been reviewed by Engineering.

•	 Verify that the product manual includes all the open source notices.

•	 Ensure that the open source package compiles on a non-corporate
machine to guarantee that the open source package you are about
to distribute compiles on a vanilla, end-user system.

•	 Indicate how to access the code of the open source package
(written offer) either through a web page download or by contacting
your company via email or postal mail at a specified address
provided in the product manual.

•	 Verify that the written offer is sufficient to cover all parts of the
source code that require such an offer (principally, code licensed
under any of the GPL/LGPL family of licenses).

•	 Perform a linguistic review to remove inappropriate comments
from the source code. Some companies forget to go through a
linguistic review and when/if their product is hacked, they face
embarrassment from exposure of inappropriate comments left in the
source code. Another important reason to perform a linguistic review

106

Open Source Compliance in the Enterprise

is to ensure that the source code and comments do not refer to
future product code names or capabilities.

•	 Ensure that existing license, copyright, and attribution notices are
not disturbed.

•	 Verify that the source code to be distributed corresponds to the
binary that goes with the product, that the source code builds
into the same library distributed with the product, and that build
instructions are included in the source distribution (derived binaries
are usually identical except for time/date stamp).

•	 Verify that the package adheres to the linkage relationships and
interactions defined in the OSRB usage form. For instance, if the
developer declared that they would dynamically link that component
to an LGPL licensed library, then we need to verify they have
done so, and have not used a static linkage method instead.
The compliance team can do this verification by using a linkage
dependency-mapping tool.

•	 Ensure a copy of the license text is already present in a LICENSE file
in the root folder of the open source package.

•	 If the source code package requires special build tools or
environment, then include the details in a README file or similar.

Post-Publication Checklist

The following is a sample checklist to go through after publishing source code:

•	 Source code packages have been successfully uploaded to the
website and can be downloaded on an external computer.

•	 Source code packages can be uncompressed on an external
computer without errors.

•	 Source code packages can be compiled and built on an external
computer without errors.

107

Open Source Compliance in the Enterprise

Written Offer

Below is an example of a written offer to provide the source code:

To obtain a copy of the source code being
made publicly available by FooBar, Inc.
(“FooBar”) related to software used in this
FooBar product (“Product”), you should
send your request in writing to:

FooBar Inc.

Attention: Open Source Compliance

Street Address

City, State, Postal Code Country

FooBar makes every possible effort to make
the source code publicly available at http://
opensource.foobar.com (“Website”) within
reasonable business delays. Before sending
your written request, please check the
Website, as the source code may already
be published there.

Alternatively, if you prefer receiving requests via email and not via postal
mail, the wording of the written offer would change slightly to the following:

To obtain a copy of the source code
being made publicly available by FooBar,
Inc. (“FooBar”) related to software used
in this FooBar product (“Product”), you
should send your request in writing to
opensourcecompliance@foobar.com.

FooBar makes every possible effort to make
the source code publicly available at http://
opensource.foobar.com (“Website”) within

108

Open Source Compliance in the Enterprise

reasonable business delays. Before sending
your written request, please check the
Website, as the source code may already
be published there.

109

Open Source Compliance in the Enterprise

Chapter 6
RECOMMENDED PRACTICES

This chapter highlights some of the recommended practices and various
considerations when integrating open source in commercial products and
services. The chapter consists of three parts:

•	 Recommended practices that map to the various steps within an
open source compliance process.

•	 Compliance considerations in relation to source code modifications,
notices, distribution, software design, usage, linkages, and code mixing.

•	 Recommended practices related to the various building blocks in an
open source compliance program.

COMPLIANCE PROCESS
As a refresher, the compliance process includes the various steps a
software component goes through before the OSRB approves it for
inclusion in a product or a software stack. The process starts by identifying
the various software components integrated into the product’s build system,
and ends by compiling a list of resulting license obligations.

The following sections provide recommended practices for processing
compliance requests. The recommended practices map directly to the
steps illustrated in the compliance process (Figure 24, next page).

Identification Phase

In the identification phase of a compliance process, organizations identify
all of the components or elements entering the build system, origin, and
license information. There are three main sources for incoming source code:

110

Open Source Compliance in the Enterprise

•	 Proprietary software created by internal developers, which may include
snippets of open source or which integrates open source at the
component level, with dependencies on or links to open source code

•	 Third party software developed by independent providers or consultants
and made available under a commercial or open source license. This
software category may include snippets or dependencies as above.

•	 Open source software developed by members of an open source
project

Figure 24. Compliance end-to-end management process

We recommend that you identify all incoming software components and run
them through the compliance process.

Source Code Auditing

There are three core recommended practices for source code auditing or
scanning:

111

Open Source Compliance in the Enterprise

Scan all source code

Scan all source code incorporated into products and services, because
development teams may have introduced open source into proprietary or third
party source code. Furthermore, development teams may have made
modifications to open source components, triggering the need for additional
due diligence and potential additional obligations. Therefore, it is critical to audit
and identify all source code included in the software stack of a product or a service.

Scan newer versions of previously approved packages

Since compliance is verified on a product-by-product, service-by-service
basis, approving for use in one case does not necessarily serve for all
cases. As a rule, each time developers modify a previously approved
component or plan to use a previously approved component in a different
context, the compliance team should rescan the source code, and the
component should pass the approval process again.

Furthermore, license changes can occur between version upgrades. When
developers upgrade versions of open source packages, make sure that
licenses of new versions are the same as those employed with older versions.

Scan early and often

The open source development model encourages frequent releases,
starting on project day one, to give users opportunities to experiment and
report bugs. The goal is to make quality assurance activities a regular part
of the development process. “Scan early and often” follows the same spirit.
Scanning source code early in the development process and continuing to
do so regularly ensures that compliance efforts are not lagging behind the
development efforts. Organizations should also create a list of conditions
that define when a new scan is required, to make the process more efficient.

The “scan early and often” approach has several advantages:

•	 It aids in the discovery of compliance issue very early in the process.

•	 It accelerates providing solutions to discovered problems within

112

Open Source Compliance in the Enterprise

acceptable timeframes without posing a serious threat to the
delivery timeline.

•	 It improves the efficiency of processing incremental, scans since it
reduces the delta of source code that needs to be scanned from
previous source code scans.

Resolving Issues

When source code is scanned and compliance issues are discovered and
flagged, there are a number of ways to resolve issues:

•	 When in doubt with the scan results, discuss with engineering staff.

•	 Inspect and resolve each file or snippet flagged by the scanning tool.

•	 Identify modifications introduced to open source software. Ideally,
you should not rely on engineers to remember if they made code
changes (let alone document them). You should rely on your build
tools to identify code changes, who made them, and when.

•	 If, for instance, the scanning tool identifies the use of un-approved
GPL licensed source code (a snippet) within a proprietary component,
this will be reported to Engineering with a request for correction. It is
highly recommended to re-scan the source code after Engineering
has resolved the issue, to confirm removal of the problem source
code and its replacement with appropriate and compatible code.

•	 In preparation for the legal review, it is best to provide attorneys
with all discovered licensing information for specific components
including the source code audit report generated by the scanning
tool, the COPYING, README, or LICENSE files for open source
components, and the licensing agreement for software components
received from a third party software provider

Architectural Review

The architecture review is an analysis of the interaction among open
source, proprietary, and third party software components. Companies often

113

Open Source Compliance in the Enterprise

conduct architecture reviews with the architect responsible for the product
in question, plus developers responsible for the various key software
components.

The goal of this review is to identify:

•	 Components that are open source (used as-is or modified)

•	 Proprietary components

•	 Third party components under a commercial license

•	 Component dependencies

•	 Communication protocols among components and subsystems

•	 Dynamic versus static linking (discussed in the following section)

•	 Components deployed in kernel space (drivers, etc.) versus user
space (libraries, middleware, applications)

•	 Components that use shared header files

•	 Other open source that the specific software component interacts
with or depends on, especially if it is governed by a different open
source license

The result of the architecture review is an analysis of the licensing
obligations that may extend from open source to proprietary or third party
components.

Approvals

As part of the approval step in the compliance process, there are two main
recommended practices:

•	 Verify that all subtasks related to the compliance ticket have been
completed and closed before approving the compliance ticket. It’s
easy to forget subtasks or pending sub-issues, but doing so may
lead to prematurely closing a compliance ticket even though open
issues remain.

114

Open Source Compliance in the Enterprise

•	 Record a summary of discussions that lead to approval or denial.
Such documentation can prove very useful when attempting to
determine on which basis the OSRB has approved the use of
specific component or snippet and how issues were resolved.

Notices

Organizations using open source in products and services need to:

•	 Acknowledge the use of open source by providing full copyright and
attribution notices.

•	 Inform end users how to obtain a copy of the open source code
(when applicable, for example in the case of GPL and LGPL
licensed source code).

•	 Reproduce the entire text of the license agreements for the open
source code included in the product.

Some recommended practices in this area include:

•	 Collect attribution and license notices incrementally, as open source
is approved for inclusion. Following this method, the required
notices file will always be up to date and will include lists of all open
source, license information, copyright, and attributions notices.

•	 Use clear language in the written offer and be inclusive of all open
source included in the product.

•	 Ensure that the end users of the product know how to locate this
information, whether on the product itself, in the product documentation
(user manual or CD-ROM/DVD), and/or on a website.

Verifications

It is very helpful and efficient to develop, maintain, and evolve checklists
that cover the verification steps that the compliance team follows, both to
ensure consistency and to ensure that no verification steps are overlooked.
Examples of pre-distribution verifications include:

115

Open Source Compliance in the Enterprise

•	 Open source packages destined for distribution have been identified
and approved

•	 Inappropriate comments have been removed from the source
code packages (this is not strictly a compliance issue; however,
comments may reveal a compliance issue that is not as visible)

•	 Source code packages made available (including modifications)
match the binary(ies) shipping in the product or software stack

•	 Appropriate notices have been included in the product
documentation, in addition to the availability of a written offer to
inform end users of their right to request source code for identified
open source (when applicable)

Once open source packages are uploaded to the distribution website (and/
or stored on equivalent media), your work is not complete. You still need to
verify that:

•	 Packages have been uploaded correctly

•	 Packages can be downloaded and uncompressed on an external
computer without error

•	 Included packages compile/build properly

•	 Developers did not leave comments about future products, product
code names, mention of competitors, or any inappropriate comments

116

Open Source Compliance in the Enterprise

TOOLS AND AUTOMATION
Tools are an essential element in a compliance program in that they can
help organizations perform compliance activities efficiently and accurately.
Many tools can prove very useful in an open source compliance program:

•	 Source code scanning and license identification tools

•	 Project management tools

•	 Bill of material difference tools

•	 Linkage analysis tools

In the following sections, we provide basic information about such tools and
how they fit within the compliance context. Multiple commercial/proprietary
and open source tools provide the various functionalities described below.

Source Code Identification Tools

Source code scanning and license identification tools provide recognition and
analysis capabilities to assist users in identifying the origin of source code
and licenses associated with open source software components and snippets.

There are several providers for such tools that we list here in alphabetical order:

•	 Antepedia (http://www.antepedia.com/)

•	 Black Duck Software (Synopsys)
(https://www.blackducksoftware.com/)

•	 Flexera Software (https://www.flexerasoftware.com/)

•	 FOSSA (http://fossa.io/)

•	 FOSSID AB (http://www.fossid.com)

•	 nexB (https://www.nexb.com/)

•	 Protecode (Synopsys) (http://www.protecode.com/)

•	 Rogue Wave Software (https://www.roguewave.com/)

117

Open Source Compliance in the Enterprise

•	 WhiteSource Software (https://www.whitesourcesoftware.com/)

In addition to commercial tools, there are two prominent open source
compliance tools:

•	 Binary Analysis Tool (http://www.binaryanalysis.org/)

•	 FOSSology (https://www.fossology.org/)

Project Management Tools

A project management tool is essential to managing and tracking
compliance activities. Some companies use bug tracking tools (see list
below) already in place with a customized compliance workflow; other
companies rely on specific project management tools or even in-house
solutions. Whatever your preference, tools should reflect the workflow of
compliance processes, facilitating moving compliance tickets from one
phase of the process to another, providing task and resource management,
time tracking, email notifications, project statistics, and reporting
capabilities.

Example bug-tracking tools commonly employed for customizing a compliance
workflow and tracking compliance tickets include Bugzilla
(https://www.bugzilla.org/) and JIRA (https://www.atlassian.com/
software/jira).

Software Bill of Material (BOM) Difference Tools

The goal of a Software BOM difference tool is to compute the difference
between two BOMs and produce a list of changes. Such a tool enables
efficient incremental compliance when facing newer versions of an existing
base code (for instance, going from release 1.1 to 1.2).

The inputs to a BOM difference tool are two BOM files that represent the list
of components available on two different versions of a product or service
code base.

The output of the BOM difference checker documents the list of new
components, retired components, and modified components.

118

Open Source Compliance in the Enterprise

BOM management tools are plentiful in the world of physical manufacturing,
but less so for managing use of open source software. In this author’s
experience, BOM difference tools that support open source management
processes are usually homegrown and/or built as mash-ups of existing tools
and capabilities. Depending on the form and format of the bill of materials, it
is possible to use command-line diff tools, productivity tools (spreadsheets,
etc.), directory comparison tools, and reports from build and continuous
integration tools, plus scripting “glue,” to create web-based BOM version
comparisons. Figure 25, created for illustration purposes, shows the sample
output of a homegrown BOM difference tool.

Figure 25. Example BOM difference report

Linkage Analysis Tool

The goal of the linkage analysis tool (also called dependency checker tool) is
to flag problematic code combinations at the dynamic and static link level,
specific to C and C++ programming languages. The tool identifies a linkage
conflict between the license of the binaries and the license of the libraries
it links to, based on predefined license policies that the user of the tool has
already defined.

There are many tools that can be used together to fulfill the function of
dependency checking.

119

Open Source Compliance in the Enterprise

The main requirements for dependency mapping are the abilities to:

•	 Identify linking among binaries and libraries

•	 Identify licenses for binaries and libraries

•	 Connect with license scanning tools or consume the output thereof

•	 Configure to match company policy preferences to flag linkages that
violate those policies (e.g., linking with GPL-licensed code)

In this our experience, linkage analysis tools, much like BOM tools, are
usually homegrown and/or built as mash-ups of existing tools and capabilities.
One off-the-shelf open source tool of this type is The Linux Foundation
Dep-Checker (http://git.linuxfoundation.org/dep-checker.git/).

120

Open Source Compliance in the Enterprise

CHAPTER 7
MANAGING COMPLIANCE INQUIRIES

This chapter presents guidelines for handling compliance inquires. These
guidelines aim to maintain a positive and collaborative attitude with
requesters while investigating allegations and ensuring proper actions when
violations actually occur.

Several organizations have received negative publicity and/or have been
subject to legal action after ignoring requests to provide compliance
information; did not know how to handle compliance inquires; lacked or
had a poor compliance program; or simply refused to cooperate, thinking
(incorrectly) that license terms were not enforceable. Today, best practices
inform us that none of these approaches is beneficial to any party involved.
Therefore, companies should not ignore compliance inquiries — rather, they
should acknowledge receipt of inquiries, inform inquiring parties of pending
response, and provide an estimated date for follow-up.

Compliance inquiries can include requests for:

•	 Access to source code in accordance with a written offer to provide
source code licensed under GPL, LGPL, or other licenses

•	 Access to source code for an undisclosed component that was
discovered in a product

•	 Verification of whether a specific open source component is used in
a product or service

•	 Update to an out-of-date attribution or copyright notice

•	 Providing files missing from open source packages made available
as part of license obligations

Companies usually receive compliance inquiries through a dedicated email
address that they advertise in their written offer or as part of their open
source notices.

121

Open Source Compliance in the Enterprise

RESPONDING TO COMPLIANCE INQUIRIES
This section introduces a method for responding to compliance inquiries.
Figure 26 presents a simple process used to respond to compliance inquiries.
The process consists of six steps that we discuss in the following sections.

Figure 26. Process of responding to compliance inquiries

Acknowledge

Once you receive the compliance inquiry, you should respond immediately,
confirming receipt and committing to investigate by a specific date. It is
important to understand the inquirer’s identity and motive and to verify
whether the complaint is justifiable, accurate, and current. It is important to
realize that some inquirers often do not fully understand licenses, leading to
mistaken assumptions and submissions. If an inquiry is missing information,
request additional clarification, such as:

122

Open Source Compliance in the Enterprise

•	 The name of the affected product(s) or service(s) or the exact code
of concern

•	 The reason why a violation is believed to exist

•	 The name of the project code and license that may have been violated

•	 A link to the project site

Inform

We recommend maintaining an open dialog with inquirers. Always highlight
your open source compliance practices and demonstrate historical good
faith efforts toward compliance. Inform inquirers about your compliance
program and practices, and assure them that you will investigate their
question. It is also advisable to send updates of your internal investigation
as they become available.

Investigate

In this step, investigating reported allegations, you should refer to the
compliance record for the component in question, review it, and verify if and
how the compliance record compares with the inquiry.

Report

After concluding the internal investigation within an acceptable delay, and
creating an internal record of the findings, you need to inform the inquirer of
the results.

Close Inquiry

If the compliance inquiry was a false alarm, you can close the compliance
inquiry ticket without any further action (other than informing the inquirer of
that resolution).

123

Open Source Compliance in the Enterprise

Rectify

If the investigation uncovers an actual compliance issue, you should
report back to the inquirer confirming that fact, with assurances that your
organization will take all the necessary steps to bring your product or
service back to compliance, specifying a date by which you expect to
complete this task. It is your responsibility to resolve the issue with the
inquirer, while being collaborative and showing good will. You need to
show that you understand the obligations under the applicable license,
communicate how — and when — you will meet the obligations. Once you
fix the problem, you should notify the inquirer immediately, and invite them
to verify the solution.

Improve

If there was a compliance issue, you should call for an OSRB meeting to
discuss the case, learn how this non-compliance occurred, and improve
existing process and practices to ensure that such errors do not happen again.

General Considerations

There are two specific considerations to be mindful of. The first is to treat
all inquiries as formal inquiries, and work under the assumption that any
information you disclose as part of the interactions with the inquirer can
become public. The second is to consider how your existing open source
compliance efforts would measure up in an enforcement action, and work
to improve your open source compliance program accordingly.

Enforcement Activities With Varying Motivations

There has been a recent increase in enforcement that is generally viewed as
being not in the spirit of ensuring compliance, but with the goal of financial
profiteering. Responding to financially motivated enforcement activities may
be very different from compliance-motivated enforcement. Therefore, such
activities may require a different approach and legal strategy than the one
proposed in this chapter.

124

Open Source Compliance in the Enterprise

It is critical to correctly discern the difference between the two, as responding
in the wrong way can make the process considerably more difficult and
expensive. In the traditional compliance-motivated enforcement, the person
bringing the complaint generally wants to see full and correct compliance
with the open source license. In most cases, they are looking for assurances
that the company will meet the terms of the licenses and make an internal
process changes that ensure such future violations will not recur. They are
generally well informed of their rights on their code and are willing to work
with you to fix the issue so long as you are responsive and provide signs
of progress. One of the worst mistakes a violator can make in this scenario
is to take a hard line legal response, as this very quickly turns them from
advocates to adversaries.

On the other hand, financially motivated enforcement is where the person
bringing the complaint is looking for a payoff, generally through a quick
financial settlement or (more rarely) punitive damages awarded by the court
system. Unfortunately, these are not always initially distinguishable from
compliance-motivated enforcement. However, a typical hint is that these
types of enforcement actions are accompanied by an immediate fiscal
settlement offer.

Your response to financially motivated enforcement depends upon many
circumstances, not the least which being your own assessment of the
complaint’s validity, the deadlines in the letter/offer, and your legal counsel’s
advice. However, it is also important to consider the possibility that you are
one of many companies being targeted in an organized manner.

Unfortunately, there are individuals who view this as a way to make easy
money, and law firms who specialize in enabling them. If you suspect this
is the case, we recommend a counsel-to-counsel discussion with other
companies who may have faced similar situations.

Becoming a Gold or Platinum member of the Linux Foundation enables your
in-house counsel to participate in Linux Foundation Legal Counsel events
and conferences, and provides an opportunity for sharing of knowledge and
best practices especially those related to managing financially motivated
enforcement.

125

Open Source Compliance in the Enterprise

CHAPTER 8
OTHER COMPLIANCE-RELATED PRACTICES

This chapter highlights compliance best practices and various
considerations outside of the actual compliance process.

EMPLOYEE APPRAISAL
There are four challenges that all companies face with regard to engineering
and compliance enforcement:

•	 Ensuring engineers consistently fill out request forms for each open
source component they want to use

•	 Requiring engineers to respond in a timely fashion to compliance tickets

•	 Verifying engineers are following the guidelines set by the OSRB

•	 Mandating engineers to take your internal open source compliance training

A practice that has proved to be effective in helping companies face these
four challenges is to include open source and compliance metrics as part
of employee performance reviews. As a result, part of the developers’
yearly bonus will depend on the extent to which they have followed the
compliance policies and procedures.

Reviewers may evaluate performance on whether employees have filled
out OSRB forms for open source software they plan to use, responded to
compliance tickets without significant delays, completed the open source
and compliance training within the set time limit, and used open source
within the guidelines set by the company’s policy.

In turn, to use compliance as a factor in employee performance reviews, the
OSRB must track these issues for each developer:

•	 Components that were included in the software BOM that don’t
have a corresponding approval

126

Open Source Compliance in the Enterprise

•	 Response time to compliance tickets

•	 Course completion

•	 Compliance violations reported to the executive team

WEB PORTALS
Some companies maintain both an internal and an external open source
web portal. The internal portal hosts compliance policies, guidelines, training
material, announcements, and access to related mailing lists. The external
portal offers a consistent means of posting source code of open source
packages they use, in fulfillment of license obligations.

MESSAGING
The single most important recommendation with respect to messaging is
to be clear and consistent, whether internally — explaining company goals
and concerns around open source, or externally — facing community
participants. Having a community-facing site is particularly important when
responding to compliance inquiries.

TRAINING
The goal of open source and compliance training is to raise awareness of
open source policies and strategies and to build a common understanding
of the issues and facts of open source licensing. Training may also cover
the business and legal risks of incorporating open source in products. It
also serves as a way to publicize and promote an organization’s compliance
policies and processes, and to promote a culture of compliance.

There are formal and informal training methods. Formal methods include
instructor-led training courses where employees have to pass a knowledge
exam to pass the course.

Informal methods include webinars, brown bag seminars, and presentations
to new hires as part of the new employee orientation session.

127

Open Source Compliance in the Enterprise

Informal Training

Brown Bag Seminars

Brown bag seminars are usually presentations offered during lunchtime by
either a company employee (in-house legal counsel, open source expert,
compliance officer, etc.) or an invited speaker (most commonly a high profile
open source developer). The goal of these seminars is to present and elicit
discussions about the various aspects of incorporating open source in
products or software stacks. These sessions can also include discussions
of the company’s compliance program, policies, and processes.

New Employee Orientation

In some instances, the Compliance Officer presents on organization
compliance efforts, rules, policies, and processes to all new employees
as part of the new employee orientation session. On their first day, new
employees would receive a 30-minute training on open source and
compliance. As a result, the new employees will have all the necessary

information they need, such as who are the internal subject matter experts,
what intranet resources exist, and how to sign up for open source and
compliance training.

Formal Training

Depending on the size of the organization and the extent to which open
source is used in commercial offerings, the organization can mandate that
employees working with open source take formal instructor-led courses and
be tested on their subject-matter proficiency.

SOURCE CODE MODIFICATION CONSIDERATIONS
With respect to source code modification, we recommend to publish an
internal set of guidelines in plain, non-legalistic language that establishes
basic rules for modifying existing source code. For example:

128

Open Source Compliance in the Enterprise

•	 Source code modifications that will remain proprietary must not
be made within an open source package, especially one that has
derivative work obligations (e.g., GPL or LGPL).

•	 Proprietary source code must not link to an open source library that
has a derivative work obligation. Companies usually request formal
OSRB approval for such action.

•	 Ensure that any modifications to source code are documented in
compliance with the open source license prior to distribution.

•	 All modifications to open source code modules shall be captured in
the revision history of the module (change log file).

NOTICES CONSIDERATIONS
One of the key obligations when using open source is to ensure clear and
accurate documentation of copyright, attribution, and license information,
and the availability of a written offer (for GPL/LGPL licensed source code).
The sum of all of these documentation obligations is often referred to as
open source notices.

Companies using open source in their offerings must acknowledge the use
of open source by providing full copyright attribution, and, in most cases,
reproducing the entire text of the licenses of the open source software included
in the product or service. Therefore, companies must fulfill documentation
obligations by including copyright, attribution, and license notices text in the
documentation of every product they ship and service they provide.

There are two primary options for fulfilling documentation obligations
requirements:

•	 Display the open source notices on the product itself. This is a
viable option if the product has a user interface that allows the user
to interact with it and pull up or display licensing information. An
example of this option is a cell phone or a tablet.

•	 Include the open source notices in the product manual or any kind
of documentation accompanying the product.

129

Open Source Compliance in the Enterprise

Some companies opt for both options when possible, in addition to
maintaining these notices on a given website (optional, but also often
adopted, and it’s low maintenance — basically just hosting the notices file
on the website). The important takeaway from the notices considerations
is to ensure that all open source notice requirements are satisfied prior to a
product distribution or service launch.

DISTRIBUTION CONSIDERATIONS
Companies want to ensure that any source code subject to open source
distribution obligations is compliance-ready prior to product shipment. By
thoroughly integrating compliance practices into the development cycle,
distribution considerations can be greatly simplified and streamlined.

USAGE CONSIDERATIONS
The following sections address considerations and caveats for using open
source in a fully compliant manner.

Clean Bill of Materials (BOM)

Ensure that any inbound software does not contain undeclared open
source. Always audit source code upon receipt from providers; alternatively,
make it a company policy that software providers must deliver audit reports
for source code they supply.

OSRB Form for Each Open Source Component

Fill out an OSRB usage request form for each open source component in
use. Avoid using any open source without explicit OSRB approval.

Understand the Risks During Mergers and Acquisitions (M&A)

Understand the open source code in use and its implications as part of the
due diligence performed prior to any corporate transaction. We discuss this
topic in Chapter 13.

130

Open Source Compliance in the Enterprise

Retired Open Source Packages

If an approved open source package is no longer in use, engineers must
inform the OSRB to update the open source inventory; alternatively, the
OSRB will discover that the package is not used anymore when they run
the BOM diff tool.

Major Source Code Changes

If an approved package went through a major change, inform the OSRB
to re-scan the source code; alternatively, the OSRB will discover that the
package has been modified when they run the BOM diff tool. A major change
in the design or implementation often affects architecture, APIs, and use
cases, and in some cases may have an impact on the compliance aspect.

Reference Original Source Code

Document the URL from which you downloaded the open source package
in addition to saving an original copy of the downloaded package.

Upgrading to Newer Versions of open source

Ensure that each new version of the same open source component is
reviewed and approved. When you upgrade the version of an open source
package, make sure that the license of the new version is unchanged from
the prior version, as license changes can occur between version upgrades.
If the license changed, contact the OSRB to ensure that compliance
records are updated and that the new license does not create a conflict.

Compliance Verification Golden Rule

Compliance is verified on a product-by-product, service-by-service basis:
Just because an open source component or snippet is approved is one
context, it does not necessarily mean that it is approved for use in a different
context, another product or service. New approval will be required.

131

Open Source Compliance in the Enterprise

Copy/Paste

Avoid using source code snippets, and avoid copying/pasting open source
code into proprietary or third party source code (or vice versa) without
prior documented OSRB approval. Such actions have serious implication on
compliance.

Mixing Source Code with Different Licenses

Avoid mixing different open source licenses in a derivative work, as many
open source licenses are incompatible with one another. It is highly
recommended to seek legal support from your Counsel on this topic.

Source Code Comments

Do not leave inappropriate comments in the source code (private
comments, product code names, mention of competitors, etc.).

Existing Licensing Information

Do not remove or in any way disturb existing copyrights or other licensing
information from any open source components that you use. All copyright
and licensing information must remain intact in all open source components,
unless you are completely certain the license allows it to be changed.

ATTRIBUTION CONSIDERATIONS
Companies that include open source in a product need to provide required
attribution to the end user. This section provides guidelines of how to fulfill
open source attribution obligations.

Attribution Types

Open source attribution requirements differ from license to license, but we
can generally group them into four categories:

132

Open Source Compliance in the Enterprise

Full License Text

A verbatim copy of the full license text is required for almost all open source
licenses.

Copyright Notices

A verbatim copy of the copyright notices is required for many open source
licenses.

Acknowledgments Notices

Some open source licenses explicitly require author attribution. In most cases,
open source projects maintain a file called AUTHORS that includes the list
of contributors; you can use this information as part of the attribution notice.

Information on Obtaining the Source Code

Most licenses with a source code redistribution obligation require either that
the source code accompany the product or that the user receive a written
offer with details on how to obtain the source code. The GPL and LGPL are
examples of licenses in this category.

Presentation of Attributions

For each product or service containing or using open source, the
attributions must be included in published user documentation (such as
the product manual) distributed in printed or electronic form, such as a
CDROM/DVD or a download from a website.

If products or services possess a graphical user interface or a command
line administrative interface, you can also provide the option to display the
attributions via that user interface.

For product updates such as over-the-air (OTA) updates for mobile phones,
the attributions must also be revised when the product update includes new
or updated open source components.

133

Open Source Compliance in the Enterprise

SPECIFIC LICENSE OBLIGATIONS
“Must include a copy of the license in documentation available to the
end user”

The license of the open source component in question must be included in
the user documentation for all products using this open source.

RECOMMENDATIONS

•	 In some instances, such as with mobile phones or tablets,
manufacturers are able to provide the notices on the actual
device via a web browser or a PDF viewer (i.e., licensing text is
available on the device either in HTML or PDF format).

•	 For products with a user accessible file system, it is
recommended that the license is included in the file system with
a filename LICENSE to make it stand out and to be similar to the
open source license filename.

•	 For product updates, license information must also be updated.
For instance, when a new software release becomes available,
the updated release must include an update license information
file to reflect any open source changes introduced in the new
release. Changes may include:

•	 New open source used

•	 Deprecated/removed open source

•	 Open source upgraded to a new version, which may
require updating the attribution/copyright notices, and,
in some rare cases, updating the license

“Must include copyright notices in documentation available to the end user”

The license of the open source component in question may require including
copyright notices in the product document available to the end user.

134

Open Source Compliance in the Enterprise

RECOMMENDATIONS

•	 For all products, copyright information must be included in printed
documentation (such as a user manual).

•	 If the use case includes a graphical user interface, the end user
should be able to view the copyright information from an ABOUT or
a LICENSE screen.

•	 If the product has a user-accessible file system, the copyright information
should be included in the file system in a file containing, for instance,
all the copyright notices for all open source used in the product.

•	 For products updates, the copyright information must also be updated.

“Advertising materials may need special acknowledgments”

This advertising clause from the original BSD license is written as follows:

All advertising materials mentioning features or use of this software must
display the following acknowledgement: This product includes software
developed by the University of California, Berkeley and its contributors.

Where applicable, all marketing and advertising material (including web-based,
magazines, newspapers, flyers, etc.) must display the acknowledgement.

GENERAL GUIDELINES
You are probably already familiar with some of the guidelines that apply
to open source licenses, such as not using the name of the open source
project for endorsement, marking the source code modifications you have
introduced, and preserving the original licensing, copyright, and attribution
information. The following sections expand on these general guidelines in
more detail.

No Endorsing or Promoting

You cannot use the name of the open source project, authors, or
contributors in any marketing, advertising, or documentation (hard copy,
digital, or on the web) without prior written permission.

135

Open Source Compliance in the Enterprise

Source Code Modifications Markup

When redistributing modified open source code, your modifications need to
be clearly marked as such, including a copyright line for those modifications
(company, year) while preserving the existing copyright lines.

Some companies elect a different approach — providing the original open
source code along with the company’s contributed patch files that apply
against the original open source code. Following this approach, the company’s
modifications are clearly separated from the original open source code.

Preserving Original License, Copyright, and Attribution

Whenever you are redistributing open source code, with or without
modifications, you must preserve the original licensing information, copyright
lines, and other attributions.

Source Code Comments

Do not leave any inappropriate comments in the source code, such as
private comments, product code names, mention of competitors, etc.

Existing Licensing Information

Do not remove or in any way disturb existing open source licensing
copyrights or other licensing information from any open source components
that you use. All copyright and licensing information is to remain intact in all
open source components.

136

Open Source Compliance in the Enterprise

Chapter 9
SCALING OPEN SOURCE LEGAL SUPPORT

Open source compliance is often more of an operational and logistical
challenge than a legal challenge. Achieving compliance requires the proper
policies and processes, training, tools, and proper staffing that enable
an organization to effectively use open source and contribute to open
source projects and communities, all while respecting copyrights of their
respective holders, complying with license obligations, and protecting the
organization’s intellectual property and that of its customers and suppliers.

However, legal counsel plays an indispensable role in supporting the open
source compliance programs and core teams that most organizations
create to ensure proper compliance.

In this chapter, we look closely at the role of the Legal Counsel in ensuring
open source compliance, and offer practical advice that a Legal Counsel
can provide to the development team. Such practical advice will enable
software developers to make day-to-day decisions related to open source
licenses without having to go back to Legal Counsel for every single question.

PRACTICAL LEGAL ADVICE
Practical advice from Legal Counsel to software developers may include:

•	 License Playbooks: Easy-to-read, digest-form summaries of open
source licenses intended for software developers

•	 License compatibility matrix: A grid to help determine whether
License-A is compatible with License-B. Software developers can
use such a matrix as they merge incoming code from different
projects under different licenses into a single body of code.

•	 License classification: An easy way to understand the different
licenses, and the course of action needed when using source code
provided under these licenses

137

Open Source Compliance in the Enterprise

•	 Software interaction methods: A guide to understanding how
software components available under different licenses interact,
and if the method of interaction is allowed per company compliance
policies

•	 Checklists: A consistent, foolproof way to remember what needs
to be done at every point in the development and compliance
processes

In the following sections, we examine these five pieces of advice, provide
examples, and discuss how they help software developers working with
open source.

LICENSE PLAYBOOKS
License playbooks are summaries of commonly used open source licenses.
They provide easy-to-understand information about these licenses, such as
license grants, restrictions, obligations, patent impact, and more. License
playbooks minimize the number of basic questions sent to Legal Counsel and
provide developers with immediate legal information about these licenses.

Figure 27 (next page) provides an example license playbook for the GPL v2.
Please note that we provide this playbook for illustration purposes only and
its content should not be considered definitive.

138

Open Source Compliance in the Enterprise

Figure 27. Example license playbook for GPL v2 (for illustration purposes only)

LICENSE COMPATIBILITY MATRIX
License compatibility is the determination of whether a software component
and its license are compatible with one or more other components and their
licenses (i.e., that their licensing terms do not conflict). Compatibility also

139

Open Source Compliance in the Enterprise

addresses the appropriate licenses for works that combine two or more
licenses (combined out-licensing).

License compatibility challenges can arise when combining diverse open
source software components, in source and/or object form that are
distributed under licenses with incompatible terms. The result of such
combination is a licensing chimera, an aggregation of software components
that for purely legalistic reasons cannot be redistributed.

An example of licensing incompatibility can be found in attempting to
combine code distributed under the Apache version 2 license with
software under the GNU GPL version 2.0 (due to patent termination
and indemnification provisions not present in the older GPL license). An
example of license compatibility is combining code licensed under the X11
license, which is explicitly compatible with the GPL version 2.

Figure 28 illustrates the creation of a single source component that
originated from multiple sources under different licenses. In this scenario,
you must ensure the sources have compatible license terms that allow you
to join them in a binary or an object file without any conflict.

Figure 28. Combining source coming under different licenses into a single binary

140

Open Source Compliance in the Enterprise

License compatibility is an area where development teams need detailed
guidance from Legal Counsel and should not be left to draw their own
conclusions. Legal Counsel can offer such guidance via a License
Compatibility Matrix that covers most popular licenses. We provide an
example matrix in Table 7.

Table 7. Example license compatibility matrix (for illustration purposes only)

Compatible
With:

License-A License-B License-C License-D License-E License-F License-G

License-A a a a

License-B a

License-C a

License-D a a a

License-E a

License-F a

License-G a a

When development teams need to combine code under different open
source licenses, they can refer to this matrix to determine if joining the
software components in question creates a licensing conflict. If a license
is heavily used and is not included in the matrix, the Legal Counsel would
analyze the license and update the compatibility matrix accordingly.

LICENSE CLASSIFICATION
In an effort to reduce the number of questions received by Legal Counsel
and to increase license and compliance process education, some companies
opt to classify the most-used licenses in their products under a handful of
categories. Figure 29 (next page) presents an example license classification,
in which we divide the most-used licenses into four categories.

141

Open Source Compliance in the Enterprise

Figure 29. Example license categories (for illustration purposes only)

Pre-approved Licenses

Permissive open source licenses often fall under this category. Source code
available under these licenses may be pre-approved for use by developers
without having to go through the approval process with their manager and/
or legal counsel. Such pre-approvals usually also require the developer to capture
any notices and to make sure they are sent to the documentation team.

Licenses Requiring Manager Approval

Manager approval is required for components distributed under these
licenses, since in addition to notices fulfillment (publishing license text,
attribution notice, copyright notice, etc.), you have the obligation to release
any source code modifications.

Licenses Requiring Legal Counsel Approval

Source code available under these licenses requires legal review and
approval. This usually applies to licenses that have a patent clause.

142

Open Source Compliance in the Enterprise

Prohibited Licenses

Some companies flag certain licenses as “not allowed” — usage not
allowed by company policy.

How can classifying licenses be helpful?

The above license categories are a way to classify licenses to make it easier
for developers to know the proper course of action when integrating code
under these licenses. Furthermore, it makes it easy to create an association
between a license and what action should be taken and by whom. Table
8 shows one easy way developers can remind themselves of the proper
actions associated with various licenses.

Table 8. A simple how-to for license classifications

Which License Action

License A Use with no problem
License E Get my manager’s approval
License I Consult with Legal
License M Can’t use this source code
Other Ask my manager for course of action

Please note that we provide these different examples and scenarios for
illustration purposes only. You can set up a different classification model with
different actions depending on your organization’s policies and guidelines.

SOFTWARE INTERACTION METHODS
As part of the compliance process, there is usually an architecture review,
the goal of which is to understand how any specific software component
interacts with any other software component, and the method of interaction.
Architecture review should identify:

•	 Components that are open source (used “as is” or modified)

•	 Proprietary components

143

Open Source Compliance in the Enterprise

•	 Components originating from third party software providers (both
open source and proprietary)

•	 Component dependencies

•	 Use of shared header files

•	 Component run-time context (kernel/drivers/modules, middleware,
libraries, applications, etc.)

•	 Inter-component dependencies beyond APIs (s/w buses, IPCs, web
APIs, etc.)

•	 Inter-language bindings

Tables 9 (below) and 10 (next page) provide additional information that Legal
Counsel can provide to software developers. The tables illustrate which
licenses can dynamically or statically link to which others, while respecting
company policies.

Table 9. Sample dynamic linkage matrix

Can Dynamically Link To License-A License-B License-C License-D

License-A a a a a

License-B a a

License-C a a

License-D a [Requires

Pre-Approval]
a

For example, looking at Table 9, source code licensed under License-B can
dynamically link to source code license under License-D. However, source
code licensed under License-C cannot dynamically link to source code licensed
under License-B. Also, note that linkages may not always be reciprocal
between licenses.

Similarly, looking at Table 10, source code licensed under License-A can
statically link to source code license under License-C. However, source
code licensed under License-A cannot statically link to source code

144

Open Source Compliance in the Enterprise

licensed under License-B. Some linkage combination may be allowed on a
case-by case basis, which is why certain combinations note “[Requires pre-
approval].”

Table 10. Sample static linkage matrix

Can Statically
Link To

License-A License-B License-C License-D

License-A a a

License-B a [Requires

Pre-Approval]

License-C a a

License-D [Requires

Pre-Approval]
a

In the event that the architecture review reveals any linkage issue (i.e., a static
or dynamic linkage that does not follow company policy as defined in the
linkage matrices), then the person responsible for driving the architecture
review (usually the compliance officer) would notify the software developer
responsible for that software component and request a correction.

CHECKLISTS
Most companies establish checklists and use them within their
development process at every major milestone. When it comes to open
source compliance, several checklists can be developed and used before
committing new external open source code to the product’s source code
repository. One example is the following checklist, used before making
source code available on an external website:

•	 All source code components have a corresponding compliance ticket.

•	 All compliance tickets have been approved by engineering and legal.

•	 All compliance tickets are clear of any unresolved subtasks attached
to them.

•	 Notices for all of the software components have been sent to the
Documentation team for inclusion in the product documentation.

145

Open Source Compliance in the Enterprise

•	 Legal has approved the written offer notice and overall compliance
documentation.

•	 Source code packages have been prepared and tested to compile
on a standard development machine.

•	 Source code provided is complete and corresponds to the binaries
in the product.

Such checklists minimize the probability of error and ensure that everyone
involved in open source management is aware of what needs to be done
before moving to the next step in the process.

CONCLUSION
Software developers need to be educated about the licenses on the various
open source components they integrate and employ. Having the Legal
Counsel provide this education in a very practical way is extremely helpful,
as it allows software developers to have access to documented practical
advice that will help answer most of their daily legal-related questions. This
practical advice usually revolves around:

•	 Inclusion of open source components into proprietary or third party
source code or vice versa

•	 Linking open source components into proprietary or third party
source code or vice versa

•	 Interaction methods between various software components
(proprietary, third party, open source)

•	 License obligations that must be met when using open source
components

Open source compliance is easy to achieve once you have built up your
program, created a policy and process, established staffing, and enabled
your team with tools to assist in the automation of the compliance execution.

146

Open Source Compliance in the Enterprise

Chapter 10
THE OPENCHAIN PROJECT

The OpenChain Project focuses on increasing open source compliance in
the supply chain. This issue, often perceived solely as a legal concern or
as corporate low priority, is tied to making sure that open source as useful
as possible to meet business objectives. Because open source is about
the use of third party code, compliance is the nexus of where equality of
access, safety of use and reduction of risk can be found. OpenChain builds
trust between organizations to accomplish this.

THE BUSINESS CASE FOR COMPLIANCE
Today many companies understand open source with respect to code
reuse and act as major supporters of open source development. However,
addressing open source license compliance in a systematic, industry-
wide manner has proven to be a somewhat elusive challenge. The global
IT market has not yet seen a significant reduction in the number of open
source compliance issues discoverable in areas like consumer electronics
over the last decade.

 The majority of compliance issues originate in the sharing multiple hardware
and software components between numerous legal entities. The global
supply chain features participants that are simultaneously intertwined and
disparate. It is possible to have companies making hardware, companies
making software and companies making combined components
collaborating around a relatively small part of a finished B2C device. The
results in terms of products are often outstanding but the challenge of
keeping track of everything is substantial.

PROCESSES ACROSS ORGANIZATIONS
Open source presents a specific challenge in the global supply chain. This is
not because open source is inherently problematic but rather due to the
varying degree of exposure and domain knowledge that companies possess.

147

Open Source Compliance in the Enterprise

By way of example, a company developing a small component that
requires a device driver may have technical staff unfamiliar with open
source development methodologies and licensing. One mistake, one
misunderstanding, and one component deployed in dozens of devices can
present an issue. Most compliance challenges arise from mistakes similar to
this. Few, if any, originate with intent.

Ultimately solving open source compliance challenges involves solving
open source compliance in the supply chain. This is no small task: there are
thousands of companies across dozens of national borders using numerous
languages. The solution lies beyond the realm of inter-company negotiation.
To address open source compliance challenges the supply chain must align
behind certain shared approaches.

Awareness of this fact and the provision of a practical solution are two
different matters. It takes time for ideas and suggested approaches to
percolate and mature. It takes input from lawyers, engineering managers,
developers and political scientists. It takes, in short, a while for the ingenuity
of the human community to bounce ideas back and forth until a simple,
clear approach is found.

THE PLACE OF THE OPENCHAIN PROJECT
The OpenChain Project formally launched in October 2016 and is hosted
by The Linux Foundation. It originated in discussions that occurred three
years earlier and continued at an increasing pace until a formal project was
born. The basic idea was simple: identify key recommended processes for
effective open source management. The goal was equally clear: reduce
bottlenecks and risk when using third-party code to make open source
license compliance simple and consistent across the supply chain. The key
was to pull things together in a manner that balanced comprehensiveness,
broad applicability, and real-world usability.

 The OpenChain Project is building an industry standard for license
compliance. It can be understood as the foundation for open source
compliance in the supply chain. Engagement and adoption is free of cost
and supported by a vibrant community backed by leading multinationals
across multiple sectors.

148

Open Source Compliance in the Enterprise

There are three interconnected parts to the OpenChain Project.

•	 A Specification that defines the core requirements of a quality
compliance program.

•	 A Conformance method that helps organizations display adherence
to these requirements.

•	 A Curriculum to provide basic open source processes and best
practices.

DEFINING KEY REQUIREMENTS OF QUALITY
OPEN SOURCE COMPLIANCE PROGRAMS
The core of the OpenChain Project is the Specification. This identifies a
series of processes that help ensure organizations of any size can address
open source compliance issues effectively. The main goal of organizations
using the OpenChain Specification is to become conformant. This means
that their organization meets the requirements of a certain version of the
OpenChain Specification. A conformant organization can advertise this fact
on their website and promotional material, helping to ensure that potential
suppliers and customers understand and can trust their approach to open
source compliance.

The Specification (available from https://www.openchainproject.org/
spec) is split into five sections describing goals that display the adoption
and use of key requirements for quality open source compliance programs.
We illustrate this in Section 1.1 of Goal 1, one of three sections constituting
the accomplishment of the full Goal. Each Section is accompanied by
related verification material and a rationale to ensure replicability and clarity.

Goal 1: Know Your FOSS Responsibilities

1.1 A written FOSS policy exists that governs FOSS license compliance
of the Supplied Software distribution. The policy must be internally
communicated.

https://www.openchainproject.org/spec
https://www.openchainproject.org/spec

149

Open Source Compliance in the Enterprise

Verification Material(s):

1.1.1 A documented FOSS policy.

1.1.2 A documented procedure that makes Software Staff aware of the
existence of the FOSS policy (e.g., via training, internal wiki, or other
practical communication method).

Rationale:

To ensure steps are taken to create, record and make Software Staff aware
of the existence of a FOSS policy. Although no requirements are provided
here on what should be included in the policy, other sections may impose

requirements on the policy.

PROVIDING AN AVENUE TO CHECK
CONFORMANCE WITH KEY PROCESSES
While the OpenChain Specification provides a clear framework for
describing and confirming adherence to the key requirements of a quality
open source compliance program, it is not a complete solution in and
of itself. Supporting the Specification is a Conformance review that can
be checked via a free online self-certification questionnaire. This is the
quickest, easiest and most effective way to check and confirm adherence
to the OpenChain Specification Goal by Goal. There is also a manual
conformance document available for organizations whose process
requires a paper review or disallows web-based submissions. Both the
online and the manual conformance can be completed at a pace decided
by the conforming organization and both methods remain private until a
submission is completed. An illustrative example of this approach can be
found in the online self-certification questions related to Section 1.1 of the
OpenChain Specification:

1.a:	 Do you have rules that govern FOSS license compliance of the
Supplied Software distribution?

1.b:	 Are these rules internally communicated?

1.c:	 Are these rules documented?	

150

Open Source Compliance in the Enterprise

1.d:	 Is your Software Staff aware of the rules that govern FOSS license
compliance of the Supplied Software distribution?

1.e:	 Do you document, how you make your Software Staff aware of the
existing procedures that govern FOSS license compliance of the Supplied
Software distribution?

1.f:	 Do you make your software staff aware of the existence of the FOSS
policy using at least one of the following methods?

	 • Training

	 • Internal documentation

	 • Other practical communication methods?

If a company can answer “yes” to each of these questions then it conforms
fully with Section 1.1 of the OpenChain Specification. If one or more
answers are “no” then it becomes easier to identify where resources should
be allocated to improve the governance of open source in the company.

The OpenChain Conformance material and online web app is available from
https://www.openchainproject.org/conformance.

SUPPORTING CONFORMANCE WITH
EDUCATIONAL MATERIAL
While the OpenChain Specification and Conformance help companies
identify and confirm adherence to the key requirements of quality
open source compliance programs, the OpenChain Curriculum helps
organizations by providing reference process, policy and training material.
It provides generic, refined and clear examples of how companies of all
sizes frame their inbound, internal and outbound software compliance. The
OpenChain Curriculum material is available with very few restrictions to
ensure organizations can use it in as many ways as possible. To accomplish
this all the core is licensed as CC-0, effectively public domain, so remixing
or sharing it freely for any purpose is possible.

A good example of the OpenChain Curriculum material can be found in
the general training slides to support open source compliance knowledge-
sharing in companies from a wide range of sectors. These slides are

https://www.openchainproject.org/conformance

151

Open Source Compliance in the Enterprise

split into eight chapters that guide users from the basics of IP through to
specifics about developer activities:

1.	 What is Intellectual Property?

2.	 Introduction to FOSS Licenses

3.	 Introduction to FOSS Compliance

4.	 Key Software Concepts for FOSS Review

5.	 Running a FOSS Review

6.	 End to End Compliance Management (Example Process)

7.	 Avoiding Compliance Pitfalls

8.	 Developer Guidelines

At the end of each chapter there is a short questionnaire entitled “Check
Your Understanding” to confirm comprehension.

For example, at the end of chapter one the following questions are asked:

•	 What type of material does copyright law protect?

•	 What copyright rights are most important for software?

•	 Can software be subject to a patent?

•	 What rights does a patent give to the patent owner?

•	 If you independently develop your own software, is it possible that you
will need a copyright license from a third party for that software? A
patent license?

Taken together the eight chapters provide a solid foundation for engaging
with open source compliance and the relevant “Check Your Understanding”
questions provide a simple, short exam to confirm staff are up-to-speed.

The OpenChain Curriculum is available from
https://www.openchainproject.org/curriculum.

https://www.openchainproject.org/curriculum

152

Open Source Compliance in the Enterprise

ENCOURAGING ADOPTION ACROSS MULTIPLE
MARKET SEGMENTS
The OpenChain Project provides a compelling approach to making open
source compliance more consistent and more effective across multiple
market segments. However, good ideas need implementation, and in
open source, this inevitably hinges on a supporting community. Fourteen
Platinum Members currently support the OpenChain Project’s development
and adoption: Adobe, ARM, Cisco, Comcast, GitHub, Harman, Hitachi,
Qualcomm, Siemens, Sony, Toyota, Western Digital, and Wind River. There
is also a wide community of almost 200 participants on the main mailing list
that share and remix ideas.

At its core, the OpenChain Project is about providing a simple, clear method
of building trust between organizations that rely on each other to share
code and create products. Any organization that is OpenChain Conformant
is aligning behind key requirements that their peers agree are required in a
quality compliance program. This is about confirming overarching processes
and policies, while allowing the specifics of each process and policy to be
crafted by each organization to suit its specific needs.

The OpenChain Specification is at version 1.2 and is ready for adoption
today by any organization that creates, uses, or distributes open source
code. The online conformance is free of charge.

The mailing list and Work Team are open to everyone. This is the first
unifying approach to addressing the challenge of open source compliance
in the supply chain, and it has the potential to be transformative in ensuring
effective allocation of resources towards open source compliance matters.

The OpenChain Project provides a quick start guide that is available from
https://www.openchainproject.org/quick-start.

GETTING INVOLVED
Due to its open source origins, the OpenChain Project has an intentionally
low barrier to entry. It hosts a series of public mailing lists, teleconferences
on the first and third Monday of each month and workshops adjacent to

https://www.openchainproject.org/quick-start

153

Open Source Compliance in the Enterprise

major open source events. All of these activities are open to participation
from any party at any time.

Formally speaking the OpenChain Project consists of work teams, a
steering and outreach committee, and a governing board. The work teams
are accessible by the activities listed above. The steering and outreach
committee is accessible to members, work team leads and one elected
representative from the broader community. Finally, the governing board is
accessible to Platinum Member company representatives.

All participants in the OpenChain community began their involvement via
the work teams and evolved their engagement over time based on their
specific requirements. This path is recommended for parties considering
engagement in the future. The first step is to join the main OpenChain
Project mailing list and informally collaborate with the wider community.
Everyone from individuals to representatives of multinational companies are
equally welcome.

To engage with the OpenChain Project community please visit
https://www.openchainproject.org/community.

https://www.openchainproject.org/community

154

Open Source Compliance in the Enterprise

Chapter 11
SOFTWARE PACKAGE DATA EXCHANGE®
(SPDX®)

INTRODUCTION
Having an accurate way to identify the software running on a system is
at the heart of being able to monitor for security vulnerabilities, as well as
conforming to the licenses associated with the software. The software in
enterprise organizations is increasingly based off of upstream open source
projects, some of which is downloaded by the organization directly, some of
which has been passed through a supply chain. An accurate software bill of
materials is needed in all cases.

The Software Package Data Exchange® (SPDX®) is an open standard for
communicating software bill of material information between organizations
as well as from upstream open source projects into an organization. A
software bill of material (SBOM) needs to be precise and unambiguous
in order to accurately identify the code being used in products, security
vulnerabilities associated with that code, the license obligations and those
who can be negotiated with to change the license obligations (copyright
holders). When we have a common language to communicate these
concepts, information can be effectively shared, and does not need to be
regenerated at each step in the supply chain.

A common language and vocabulary to express security, licensing, and
copyright information for products, components, packages, files and
code snippets, enable tools to be created and facilitate the introduction
of automation. The SPDX project was started to provide such a language
for summarizing SBOM information so that it could be exchanged. As the
initial version of the specification was being developed, it was recognized
that there was a need for a common list of licenses represented by unique
identifiers. Scanning software to determine the appropriate license to use
was error prone due to the natural language syntax that is used in license

155

Open Source Compliance in the Enterprise

headers, and the variations that have emerged. What is easy for a human
to understand is not always understandable for source code scanning tool.
In recent years, the project has also adopted a syntax for using the license
identifiers in source code to clarify which license should be apply and fixing
the problem at the source level as well.

The SPDX specification and license list (http://www.spdx.org) were
created by developers, supply chain, security and legal professionals
collaborating. The interdisciplinary team has been incrementally refining
the SPDX specification (currently at 2.1.1 [https://spdx.github.io/spdx-
spec/]) and the list of recognized licenses (currently at version 3.2) (https://
spdx.org/licenses/) since 2010. If there is a use case you’re not sure how
to represent with the specification, you are encouraged to reach out to the
volunteers at spdx-outreach@spdx.org and ask about it. If someone
can’t figure out a solution, the use case will be added to the topics for the
specification team to address. The project also has a set of Java
(https://github.com/spdx/tools/) and Python (https://github.com/
spdx/tools-python) based tools to help with validation of documents, and
conversion between the supported formats.

SPDX License List

The SPDX license list identifiers (https://spdx.org/spdx-license-list/
request-new-license) have been widely adopted at this point and the
identifiers are recognized by an increasing number of upstream open
source projects, companies, organizations, governments, and tool vendors.
The purpose of the SPDX License List is to enable easy and efficient
identification of such licenses and exceptions in an SPDX document,
in source files or elsewhere. Use of this standard streamlines license
identification across the supply chain while reducing redundant work.

The SPDX License List is a list of commonly found licenses and exceptions
used in free and open source and other collaborative software or documentation.
The SPDX License List includes a standardized short identifier, full name, vetted
license text including matching guidelines markup as appropriate, and a
canonical permanent URL for each license and exception. When you go to
the SPDX License List web site, you’ll see the SPDX License List table.

http://www.spdx.org
https://spdx.github.io/spdx-spec/
https://spdx.github.io/spdx-spec/
https://spdx.org/licenses/
https://spdx.org/licenses/
mailto:spdx-outreach%40spdx.org?subject=
https://github.com/spdx/tools/
(https://github.com/spdx/tools-python)
(https://github.com/spdx/tools-python)
https://spdx.org/spdx-license-list/request-new-license
https://spdx.org/spdx-license-list/request-new-license

156

Open Source Compliance in the Enterprise

The first thing to note is the SPDX License List version number. It is
important to keep in mind that this is a living list, and gets updates
approximately every quarter. If you don’t see a license you are commonly
encountering in open source code, please feel free to send a request for
proposing a license or an exception to be added to the SPDX License List
(https://spdx.org/spdx-license-list/request-new-license).

The SPDX license list can also be programmatically accessed as well,
so that your organization’s tools can use the license text and matching
guidelines as well. The recommended way to get programmatic access
to the latest version of the license list is through the project on GitHub
(https://github.com/spdx/license-list-data), rather than scraping the
web site. The repository there contains various generated data formats
for the SPDX License List, including JSON, RDFa/HTML, RDF NT, RDF
turtle, RDF/XML, HTML as well as a simple text version. More details on
how to programmatically access the SPDX license list can be found on the
GitHub repo (https://github.com/spdx/license-list-data/blob/master/
accessingLicenses.md) as well.

In the SPDX License List table, you’ll see the columns for:

•	 Full Name of the license.

•	 Identifier for the license. This “short identifier” also gets referred to
as the SPDX-id in some places.

•	 FSF Free/Libre? If the license is considered free by the FSF

https://spdx.org/spdx-license-list/request-new-license
https://github.com/spdx/license-list-data
https://github.com/spdx/license-list-data/blob/master/accessingLicenses.md
https://github.com/spdx/license-list-data/blob/master/accessingLicenses.md

157

Open Source Compliance in the Enterprise

(https://www.gnu.org/licenses/license-list.en.html), this field
will indicate “Y” and is otherwise left blank

•	 Is OSI Approved? If the license is OSI-approved, this field will
indicate “Y” and otherwise left blank

•	 License Text of the license. The full text of the license is provided
as well as any standard headers associated with a license.

If you click on the column headers it will sort the SPDX License List table by
those fields. By clicking on the “Full Name” or the “License Text” you’ll also
be taken to a canonical permanent URL for that license that provides more
information about the license. An example of the GPL-2.0-only license page
is reproduced below. The permanent URL is made by appending the short
identifier to the “https://spdx.org/licenses/” prefix.

https://www.gnu.org/licenses/license-list.en.html
https://spdx.org/licenses/

158

Open Source Compliance in the Enterprise

On this page, in addition to the fields shown in the SPDX License List table are:

•	 Other web pages for this license. This Includes URL for the
official text of the license or exception and f the license is OSI
approved, also include URL for OSI license page

•	 Notes. Factual information may be noted here, including links to
translations.

•	 Standard Header. Use when the license indicates specific text
intended to be put in the header of source files.

SPDX License IDs

Accurately identifying the license for open source software is important for
license compliance. However, determining the license can sometimes be
difficult due to a lack of information or ambiguous information. Even when
there is some licensing information present, a lack of consistent ways of
expressing the license can make automating the task of license detection
very difficult, thus requiring significant amounts of manual human effort.
There are some commercial tools applying machine learning to this problem
to reduce the false positives, and train the license scanners, but a better
solution is to fix the problem at the upstream source.

In 2013, the U-boot project decided to use (https://git.denx.de/?p=u-
boot.git;a=commit;h=eca3aeb352c964bdb28b8e191d6326370245e03f)
the SPDX license identifiers in each source file instead of boilerplate that had
been used up to that point. The initial commit message had an eloquent
explanation of reasons behind this transition.

Licenses: introduce SPDX Unique License Identifiers

Like many other projects, U-Boot has a tradition of including big blocks
of License headers in all files. This not only blows up the source code
with mostly redundant information, but also makes it very difficult to generate
License Clearing Reports. An additional problem is that even the same licenses
are referred to by a number of slightly varying text blocks (full, abbreviated,
different indentation, line wrapping and/or white space, with obsolete
address information, ...) which makes automatic processing a nightmare.

To make this easier, such license headers in the source files will be
replaced with a single line reference to Unique License Identifiers as

https://git.denx.de/?p=u-boot.git;a=commit;h=eca3aeb352c964bdb28b8e191d6326370245e03f
https://git.denx.de/?p=u-boot.git;a=commit;h=eca3aeb352c964bdb28b8e191d6326370245e03f

159

Open Source Compliance in the Enterprise

defined by the Linux Foundation’s SPDX project [1]. For example, in a
source file the full “GPL v2.0 or later” header text will be replaced by a
single line:

 SPDX-License-Identifier: GPL-2.0+

We use the SPDX Unique License Identifiers here; these are available at
[2].

...

[1] http://spdx.org/

[2] http://spdx.org/licenses/

The SPDX project liked the simplicity of this approach, and formally adopted
the syntax for embedding SPDX-License-Identifier’s into the project and
documented the syntax in SPDX specification version 2.1 “Appendix V:
Using SPDX short identifiers in Source Files”. Since then, other upstream
open source projects and repositories have adopted use of these short
identifiers to identify the licenses in use, including github in its licenses-API.

In 2017, the Free Software Foundation Europe created a project called
REUSE.software that provided guidance for open source projects on how
to apply the SPDX-License-Identifiers into projects. The REUSE.software
guidelines were followed for adding SPDX-License-Identifiers into the Linux
kernel, later that year.

The SPDX-License-Identifier syntax used with short identifiers from the
SPDX License List (referred to as SPDXLIDs) can be used to indicate
relevant license information at any level, from package to the source code
file level. The “SPDX-License-Identifier” phrase and a license expression
formed of SPDXLIDs in a comment form a precise, concise and language
neutral way to document the licensing that is simple to machine process.
This leads to source code that is easier to read, which appeals to
developers, as well as enabling the licensing information to travel with the
source code.

To use SPDXLIDs in your project’s source code, just add a single line in the
following format, tailored to your license(s) and the comment style for that
file’s language. For example:

160

Open Source Compliance in the Enterprise

// SPDX-License-Identifier: MIT

/* SPDX-License-Identifier: MIT OR Apache-2.0 */

SPDX-License-Identifier: GPL-2.0-or-later

To learn more about how to use SPDXLIDs with your source code, please
see the documentation in the SPDX project, REUSE.software and David
Wheeler’s tutorial (https://github.com/david-a-wheeler/spdx-tutorial).

In addition to U-boot, Linux transitioning to use the SPDXLL IDs, newer
projects like Zephyr and Hyperledger fabric have adopted them right from
the start as a best practice. Indeed, to achieve the Core Infrastructure
Initiative’s gold badge, each file in the source code must have a license, and
the recommended way is to use an SPDXLL ID.

The project MUST include a license statement in each source file. This MAY
be done by including the following inside a comment near the beginning of
each file: SPDX-License-Identifier: [SPDX license expression for project].

When SPDXLIDs are used, gathering license information across your
project files can start to become as easy as running grep. If a source file
gets reused in a different package, the license information travels with the
source, reducing the risk of license identification errors, and making license
compliance in the recipient project easier. By using SPDXLIDs in license
expressions, the meaning of license combinations is understood more
accurately. Saying “this file is MPL/MIT” is ambiguous, and leaves recipients
unclear about their compliance requirements. Saying “MPL-2.0 AND MIT”
or “MPL-2.0 OR MIT” specifies precisely whether the licensee must comply
with either licenses, or either license, when redistributing the file.

As illustrated by the transition underway in the Linux kernel, SPDXLIDs
can be adopted gradually. You can start by adding SPDXLIDs to new files
without changing anything already present in your codebase.

SPDX Specification – Background

The Software Package Data Exchange® (SPDX®) specification is a common
language for communicating the components, licenses, security information
and copyrights associated with software packages. SPDX reduces redundant

https://github.com/david-a-wheeler/spdx-tutorial

161

Open Source Compliance in the Enterprise

work by providing a syntax and vocabulary for companies and communities
to share important data, thereby streamlining and improving compliance.

Software development teams across the globe use the same open source
packages, but in 2010, there was little infrastructure exists to facilitate
collaboration on the analysis or share the results of these analysis activities.
As a result, many groups were performing the same work leading to duplicated
efforts and redundant information. The SPDX project was formed to create
a data exchange format so that information about software packages and
related content may be collected and shared in a common format with the
goal of saving time and improving data accuracy. The specification is a
living document, as new use-cases are examined, it evolves. Development
progresses through collaboration between technical, business and legal
professionals from a range of organizations to create a standard that
addresses the needs of various participants in the software supply chain.

Companies and organizations (collectively “Organizations”) are widely
using and reusing open source and other software packages. Accurate
identification of the software is key to understanding if it contains any
security vulnerability.

Compliance with the associated licenses requires a set of analysis activities
and due diligence that each Organization performs independently, which
may include a manual and/or automated scan of software and identification
of associated licenses followed by manual verification.

The SPDX specification is developed by community members participating
the SPDX project, which is hosted by the Linux Foundation. This grass-
roots effort has had participation over the years from a wide variety of
software developers, systems and tool vendors, foundations and the legal
community—all committed to creating a common format for products,
components and software packages to be able to exchange Software Bill of
Materials (SBOM) data efficiently and effectively.

Overview of an SPDX Document

The SPDX specification describes the necessary sections and fields to
produce a valid SPDX document.

162

Open Source Compliance in the Enterprise

Document Creation Information

Package Information

File Information

Snippet Information

Information

Relationships

Document Creation Information

Each SPDX document can be composed from the following:

•	 Document Creation Information: One instance is required for
each SPDX file produced. It provides the necessary information for
forward and backward compatibility for processing tools (version
numbers, license for data, authors, etc.)

•	 Package Information: A package in an SPDX document can
be used to describe a product, container, component, packaged
upstream project sources, contents of a tar ball, etc. It’s just a way
of grouping together items that share some common context. It is
not necessary to have a package wrapping a set of files.

•	 File Information: A file’s important meta information, including its
name, checksum licenses and copyright, is summarized here.

•	 Snippet Information: Snippets can optionally be used when a file
is known to have some content that has been included from another
original source. They are useful for denoting when part of a file may
have been originally created under another license.

•	 Other Licensing Information: The SPDX license list does not
represent all licenses that can be found in files, so this section
provides a way to summarize other license that may be present in
software being described.

•	 Relationships: Most of the different ways that SPDX documents,

163

Open Source Compliance in the Enterprise

packages, files can be related to each other can be described with
these relationships.

•	 Annotations: Annotations are usually created when someone
reviews the SPDX document and wants to pass on information
from their review. However, if the SPDX document author wants to
store extra information that doesn’t fit into the other categories, this
mechanism can be used.

It’s important to note that not all of these sections are required in every
document. The only one that is mandatory is to have a “Document Creation
Information” section for each document. Then it’s a matter of using the
sections (and subset of the fields in each section) that describe the software
and metadata information you’re planning to share. However, for each
package and file section that is used, there does need to be a hash, so
recipients of the SPDX document can independently check if the metadata
information is still valid.

Each document is capable of being represented by a full data model
implementation and identifier syntax. This permits exchange between
data output formats (RDFa, tag:value, spreadsheet), and formal validation
of the correctness of the SPDX document. In the SPDX specification 2.2
release, the additional output formats of JSON, YAML and XML are planned
to be supported. Further information on the data model can be found in
Appendix III of the SPDX Specification (https://spdx.github.io/spdx-
spec/appendix-III-RDF-data-model-implementation-and-identifier-
syntax/) and on the SPDX web site (https://spdx.org/rdf/terms/).

Document Creation Information

There must be a “Document Creation Information” section for each SPDX
document. In it, seven of the fields are required to be filled out. The version
of the SPDX specification used to generate the document is the first field, as
it provides the key to understand which fields are in each document. Each
SPDX document is considered to be under CC0-1.0 (https://spdx.org/
licenses/CC0-1.0.html) license, and this is denoted by the data license.
Other mandatory elements are the self-identification of the document and its
namespace, who created the document, and when.

https://spdx.github.io/spdx-spec/appendix-III-RDF-data-model-implementation-and-identifier-syntax/
https://spdx.github.io/spdx-spec/appendix-III-RDF-data-model-implementation-and-identifier-syntax/
https://spdx.github.io/spdx-spec/appendix-III-RDF-data-model-implementation-and-identifier-syntax/
https://spdx.org/rdf/terms/
https://spdx.org/licenses/CC0-1.0.html
https://spdx.org/licenses/CC0-1.0.html

164

Open Source Compliance in the Enterprise

Each field has a specific grammar associated with it and rules for parsing.
Details of each field, rationale for the field, and parsing guidance can be
found in https://spdx.github.io/spdx-spec/2-document-creation-
information/

Mandatory Added Field Name Comment
X 1.0 2.1 SPDX Version which version of SPDX?
X 1.0 2.2 Data License data in document: CC0-1.0
X 2.0 id of the document itself
X 2.0 2.4 Document Name
X 2.0 2.5 SPDX Document Namespace URI

2.0 2.6 External Document Reference
1.2 2.7 License List Version when document created.

X 1.0 2.8 Creator • Manual review (who, when)
• Tool (id, version, when)

X 1.0 2.9 Created when?
1.0 2.10 Creator Comment comments on creator?
1.1 2.11 Document Comment comments on this document?

D
oc

um
en

t C
re

at
io

n
In

fo
rm

at
io

n

2.3 SPDX Identifier

how was the file created?

An example of this section expressed as tag:value is:

SPDXVersion: SPDX-2.1

DataLicense: CC0-1.0

SPDXID: SPDXRef-DOCUMENT

DocumentName: SPDX document for Time version 1.7

DocumentNamespace: http://spdx.org/documents/d3e9fef0-00a0-4b39-bb28-ff3dc75c7200

LicenseListVersion: 2.5

Creator: Tool: Source Auditor Open Source Console

Creator: Organization: Source Auditor Inc.

Created: 2018-09-26T11:44:51Z

Package Information

If there is a grouping of elements to be described, then a package section
should be created. This section can be used to represent a product, a
container, an upstream project source repository, or even an archive. It
has relationships to other package information sections or file information

https://spdx.github.io/spdx-spec/2-document-creation-information/
https://spdx.github.io/spdx-spec/2-document-creation-information/

165

Open Source Compliance in the Enterprise

sections. If there are no files associated with this package in the document,
then “Files Analyzed” should be set to indicate this. By using “External Reference”
field, the package can be linked to security information as well as to public
repositories, in addition to any “Package Download Location” provided.

There are three mandatory fields associated with describing licensing of the
package. The “Concluded License”, is filled in by the creator after looking at
“All License Information from Package” and “Declared License” information.
As an example, the Linux kernel would have a “Conclude License” of
“GPL-2.0-only with Linux-syscall-note”, the “Declared License” would be
based on the contents of the COPYING FILE and “All License Information
from Package” would probably have about 80 licenses listed, based on the
version of the kernel selected.

Details of each field, rationale for the field, and parsing guidance can be
found in https://spdx.github.io/spdx-spec/3-package-information/

Mandatory Added Field Name Comment
X 1.0 3.1 Package Name formal name by originator
X 2.0 unique ID

1.0 3.3 Package Version
1.0 3.4 Package File Name
1.0 3.5 Package Supplier
1.0 3.6 Package Originator

X 1.0 3.7 Package Download Location download URL
2.1 3.8 Files Analyzed

X 1.0 special algorithm
1.0 3.10 Package Checksum
1.2 3.11 Package Home Page project homepage
1.0 3.12 Source Information

X 1.0 3.13 Concluded License
X 1.0 3.14 All Licenses Information from Package
X 1.0 3.15 Declared License

1.0 3.16 Comments on License
X 1.0 3.17 Copyright Text any copyrights declared?

1.0 3.18 Package Summary Description
1.0 3.11 Package Detailed Description
2.0 3.12 Package Comment
2.1 3.13 External Reference
2.1 3.14 External Reference Comment

Pa
ck

ag
e

In
fo

rm
at

io
n

3.2 Package SPDX Identifier

actual file name for package

files associated with package?
3.9 Package Verification Code

An example of a package expressed as tag:value is:

PackageName: GNU Time

SPDXID: SPDXRef-1

https://spdx.github.io/spdx-spec/3-package-information/

166

Open Source Compliance in the Enterprise

PackageVersion: 1.7

PackageFileName: time-1.7.tar.gz

PackageSupplier: Organization: GNU

PackageOriginator: Organization: GNU

PackageDownloadLocation: ftp://ftp.gnu.org/gnu/time/

PackageVerificationCode: dd5cf0b17bfef4284c6c22471b277de7beac407c

PackageChecksum: SHA1: dde0c28c7426960736933f3e763320680356cc6a

PackageLicenseConcluded: GPL-2.0+

PackageLicenseInfoFromFiles: GPL-2.0+

PackageLicenseInfoFromFiles: MIT

PackageLicenseInfoFromFiles: GPL-2.0

PackageLicenseDeclared: GPL-2.0+

PackageCopyrightText: <text>Copyright (C) 1990, 91, 92, 93, 96 Free
Software Foundation, Inc.</text>

PackageSummary: <text>The ‘time’ command runs another program, then
displays information about the resources used by that program, collected
by the system while the program was running.</text>

PackageDescription: <text>The ‘time’ command runs another program, then
displays information about the resources used by that program, collected by
the system while the program was running. You can select which information
is reported and the format in which it is shown, or have `time’ save the
information in a file instead of displaying it on the screen.</text>

File Information

Each individual file to be summarized, must have a name and a checksum
associated with it. If there is any “License Information in File”, then it should
be documented either by an SPDX ID or via a “LicenseRef-” (see Other
Licensing Information).

In some cases, the information found in the file may not be the “Concluded
License” for that file, and so a second mandatory field is provided, so the
license that governs the file can be made explicit. If there is any copyright
information in the file it should also be summarized.

167

Open Source Compliance in the Enterprise

Mandatory Added Field Name Comment
X 1.0 4.1 File Name
X 2.0 unique ID

1.0 4.3 File Type source, binary, ...
X 1.0 4.4 File Checksum SHA1, MD5, SHA256
X 1.0 4.5 Concluded License by SPDX document creator
X 1.0 4.6 License Information in File

1.0 4.7 Comments on License
X 1.0 4.8 Copyright Text

1.0 4.9 Artifact of Project Name deprecated
1.0 4.10 Artifact of Project Homepage deprecated
1.0 4.11 Artifact of Project URI deprecated
1.1 4.12 File Comment
1.2 4.13 File Notice
1.2 4.14 File Contributor
1.2 4.15 File Dependencies deprecated

Fi
le

 In
fo

rm
at

io
n

4.2 File SPDX Identifier
what is name of file

detected by scanning file

if Notice found in file
if Contributor info in file

In the above table, some fields are marked as deprecated and should not
be used, however were present in prior versions of this section. Details
of each field, rationale for the field, and parsing guidance can be found in
https://spdx.github.io/spdx-spec/4-file-information/.

An example of a package expressed as tag:value is:

FileName: ./time.c

SPDXID: SPDXRef-4

FileType: SOURCE

FileChecksum: SHA1: 712d7f9dfde674283596ae2088550e3ff23ae1ba

LicenseConcluded: GPL-2.0+

LicenseInfoInFile: NOASSERTION

FileCopyrightText: <text>Copyright Free Software Foundation, Inc</text>

Snippet Information

Each instance of “Snippet Information” needs to be associated with a specific
“File Information” in an SPDX Document via the File’s “SPDX Identifier”.
The “Snippet Byte Range” field is used identify the part of the file being
described. The “Snippet Concluded License” and any “Snippet Copyright
Text” are also required to be documented when a snippet section is used.

https://spdx.github.io/spdx-spec/4-file-information/

168

Open Source Compliance in the Enterprise

Mandatory Added Field Name Comment
X 2.1 unique ID
X 2.1 unique ID
X 2.1 5.3 Snippet Byte Range number:number

2.1 5.4 Snippet Line Range number:number
X 2.1 5.5 Snippet Concluded License By SPDX document creator

2.1 5.6 License Information in Snippet
2.1 5.7 Snippet Comments on License

X 2.1 5.8 Snippet Copyright Text
2.1 5.9 Snippet Comments
2.1 5.10 Snippet Name for convenience

Sn
ip

pe
t I

nf
or

m
at

io
n

5.1 Snipper SPDX Identifier
5.2 Snipper from File SPDX Identifier

detected by scanning file

Details of each field, rationale for the field, and parsing guidance can be
found in https://spdx.github.io/spdx-spec/5-snippet-information/.

An example of a snippet expressed as tag:value is:

SnippetSPDXID: SPDXRef-5

SnippetFromFileSPDXID: SPDXRef-2

SnippetByteRange: 889:9002

SnippetLineRange: 24:245

SnippetLicenseConcluded: Apache-2.0

LicenseInfoInSnippet: BSD-2-Clause-FreeBSD

SnippetCopyrightText: <text>Copyright 2001-2016 The Apache Software
Foundation</text>

SnippetComment: <text> This snippet should have a related package with
an external referenced, however, the maven-plugin only supports external
references for the main package </text>

SnippetName: Apache Commons Math v. 3.6.1

Other Licensing Information

One instance of “Other Licensing Information” should be created for every
unique license or licensing information reference detected in the files or
packages described in the document that does not match one of the
licenses on the SPDX License List. Each found license documented must
have a “License Identifier” assigned to the verbatim “Extracted Text” found.
The “License Identifier” is required to start with the prefix “LicenseRef-”

https://spdx.github.io/spdx-spec/5-snippet-information/

169

Open Source Compliance in the Enterprise

to help identify it in the rest of the document. In some case the extracted
license may have a formal name in other contexts, and the “License Name”
is an optional field to permit recording this if known. Details of each field,
rationale for the field, and parsing guidance can be found in https://spdx.
github.io/spdx-spec/6-other-licensing-information-detected/.

Mandatory Added Field Name Comment
X 1.0 LicenseRef-uniqueID
X 1.0 6.2 Extracted Text text found during scans

1.1 6.3 License Name formal name
1.1 6.4 License Cross Reference text found during scans
1.1 6.5 License Comment unique ID

* OPTIONAL NOTES: • Provides a way to identify licenses not on the SPDX License List • SPDX aims for ~90% coverage with short forms license

O

th
er

 L
ic

en
si

ng

In
fo

rm
at

io
n*

6.1 License Identifier

identifiers - NOT exhaustive · Although there are a lot of licenses “in the wild,” a smaller number covers most project

An example of an extracted license expressed as tag:value is:

LicenseID: LicenseRef-FaustProprietary

ExtractedText: <text>FAUST, INC. PROPRIETARY LICENSE:

FAUST, INC. grants you a non-exclusive right to use, modify, and distribute
the file provided that (a) you distribute all copies and/or modifications
of this file, whether in source or binary form, under the same license,
and (b) you hereby irrevocably transfer and assign the ownership of your
soul to Faust, Inc. In the event the fair market value of your soul is
less than $100 US, you agree to compensate Faust, Inc. for the difference.
Copyright (C) 2016 Faust Inc. All, and I mean ALL, rights are reserved.</
text>

LicenseName: Faust (really) Proprietary License

LicenseComment: <text>This license was extracted from the file
InsufficientKarmaException</text>

Relationships

This field can be used to provide information about the relationship between
two SPDX elements. For example, you can represent a relationship between
two different Files, between a Package and a File, between two Packages,
or between one SPDXDocument and another SPDXDocument.

Mandatory Added Field Name Comment
X 2.0 7.1 Relationship unique ID

2.0 7.2 Relationship Comment text found during scans
* OPTIONAL

Re

la
tio

n-
sh

ip
s*

https://spdx.github.io/spdx-spec/6-other-licensing-information-detected/
https://spdx.github.io/spdx-spec/6-other-licensing-information-detected/

170

Open Source Compliance in the Enterprise

The relationships between two elements that are supported are:

•	 DESCRIBES, DESCRIBED_BY

•	 CONTAINS, CONTAINED_BY

•	 GENERATES, GENERATED_FROM

•	 ANCESTOR_OF, DESCENDANT_OF

•	 VARIANT_OF, COPY_OF

•	 DISTRIBUTION_ARTIFACT, PATCH_FOR, PATCH_APPLIED

•	 FILE_ADDED, FILE_DELETED, FILE_MODIFIED

•	 EXPANDED_FROM_ARCHIVE

•	 DYNAMIC_LINK, STATIC_LINK

•	 DATA_FILE_OF, TEST_CASE_OF, BUILD_TOOL_OF,
DOCUMENTATION_OF

•	 OPTIONAL_COMPONENT_OF, METAFILE_OF, PACKAGE_OF

•	 AMENDS

•	 PREREQUISITE_FOR, HAS_PREREQUISITE

•	 OTHER

This set of relationships was determined by examining common use cases
in the supply chain. Others can be added if a use case can be shown not
to be able to be represented with the current set by opening a new issue
(https://github.com/spdx/spdx-spec/issues) against the SPDX specification.

A detailed description and examples of each relationship can be found in
https://spdx.github.io/spdx-spec/7-relationships-between-SPDX-
elements/.

A Relationship would follow a file or package section, and may have a
comment associated with it:

https://github.com/spdx/spdx-spec/issues
https://spdx.github.io/spdx-spec/7-relationships-between-SPDX-elements/
https://spdx.github.io/spdx-spec/7-relationships-between-SPDX-elements/

171

Open Source Compliance in the Enterprise

Relationship: SPDXRef-2 PREREQUISITE_FOR SPDXRef-1

RelationshipComment: <text>The package foo.tgz is a pre-requisite for
building the executable bar.</text>

Annotations

This section permits a person, organization or tool to add comments about
elements in an SPDX document. Comments can be made on file, package,
or the entire document. Annotations are usually created when someone reviews
the file, but if an author wants to store extra information about one of the
elements during creation this can be used as well. If an annotation is to be
made, all the sections need to be filled out. More details on the fields and
values can be found in: https://spdx.github.io/spdx-spec/8-annotations/.

Mandatory Added Field Name Comment

X 2.0 8.1 Annotator the person, company, or tool
which provided the annotation

X 2.0 8.2 Annotation Date
X 2.0 8.3 Annotation Type reviewer or other
X 2.0 unique ID
X 2.0 8.5 Annotation Comment free form information

* OPTIONAL NOTES: • Annotations with type = reviewer cover all functionality deprecated Reviewer Information (section 9).

An
no

ta
ti

on
s*

8.4 SPDX Identifier Reference

An example annotation could look like:

Annotator: Person: John Smith

AnnotationDate: 2018-01-29T18:30:22Z

AnnotationType: REVIEW

SPDXREF: SPDXRef-5

AnnotationComment: <text>Copyright on snippet should be Copyright 2010-
2012 CS Systèmes d’Information </text>

Tools and Other Resources for Sharing SPDX Documents

Many companies generate SPDX documents from their internal
infrastructure now. Wind River was one of the first to make SPDX
documents the standard output format for SBOMs associated with their
products. Other companies including TI, Intel, ARM, Samsung have been
public about their use of the information in internal databases.

https://spdx.github.io/spdx-spec/8-annotations/

172

Open Source Compliance in the Enterprise

Tools That Can Generate SPDX Documents

FOSSology

FOSSology is an open source license compliance software system and
toolkit. As a toolkit you can run license, copyright and export control scans
from the command line. As a system, a database and web UI are provided
to give you a compliance workflow. License, copyright and export scanners
are tools available to help with your compliance activities.

•	 Source code for the tool is available from:
https://github.com/fossology/fossology

•	 Installation instructions are available from:
https://wiki.fossology.org/handson

ScanCode

ScanCode is an open source tool to scan code and detect licenses, copyrights,
packages metadata & dependencies and more, to find, discover, and
inventory open source and third-party components used in your code.

Source code and installation instructions are available from https://github.
com/nexB/scancode-toolkit

FOSSID

Commercial tool able to create SPDX documents. http://fossid.com/services/

Black Duck Hub

Commercial tool able to export SPDX documents. https://www.
blackducksoftware.com/solutions/open-source-license-compliance.

Source Auditor

Commercial tool able to create SPDX documents.
http://sourceauditor.com/blog/source-auditor-supports-spdx-2/

https://github.com/fossology/fossology
https://wiki.fossology.org/handson
https://github.com/nexB/scancode-toolkit
https://github.com/nexB/scancode-toolkit
http://fossid.com/services/
https://www.blackducksoftware.com/solutions/open-source-license-compliance
https://www.blackducksoftware.com/solutions/open-source-license-compliance
http://sourceauditor.com/blog/source-auditor-supports-spdx-2/

173

Open Source Compliance in the Enterprise

Protecode

Commercial tool able to create SPDX documents.
http://www.protecode.com/license-compliance-is-evolving-with-spdx/

Tools Able to Import SPDX Documents

SPDXTools

These tools are able to consume SPDX documents, and verify they are
correct. The tools also include translators between formats, as well as
plugins and summarizers.

SPDXTools are available from https://github.com/spdx/tools

FOSSology

After version 3.2, FOSSology is able to import SPDX RDF documents, and
include the information in its database. Please refer to the 3.2.0 release note
for details: https://github.com/fossology/fossology/releases/tag/3.2.0.

If you don’t see your favorite commercial tool on this list, please reach
out to that vendor and let them know you want the ability to import SPDX
documents.

Help Improve SPDX

The SPDX community consists of individuals and companies who are
producing and consuming SPDX documents, as well as those who
contribute to the SPDX specification, License List and tools.

There are three SPDX teams that work on different aspects of the SPDX
project. They are:

Technical (https://spdx.org/WorkgroupTechnical) - Maintains and
publishes the specification and tools.

Outreach (https://spdx.org/WorkgroupOutreach)– Supports SPDX
adoption efforts.

http://www.protecode.com/license-compliance-is-evolving-with-spdx/
https://github.com/spdx/tools
https://github.com/fossology/fossology/releases/tag/3.2.0
https://spdx.org/WorkgroupTechnical
https://spdx.org/WorkgroupOutreach

174

Open Source Compliance in the Enterprise

Legal (https://spdx.org/legal-team) - Publishes and maintains the license
list and associated collateral.

Each team has its own meetings and mailing list and in general there are
conference calls at least bi-weekly with the technical team meeting every
week. There is also a general mailing list (https://lists.spdx.org/g/spdx)
along with a monthly meeting for everyone in the SPDX community, the
general mailing list is low volume and provides an overview of the workgroups.

https://spdx.org/legal-team
https://lists.spdx.org/g/spdx

175

Open Source Compliance in the Enterprise

Chapter 12
EVALUATING SOURCE CODE SCANNING TOOLS

There are a number of companies providing open source compliance tools
and services. The question of what tool is best for a specific usage model
and environment always comes up. Hence, this chapter that presents
a number of metrics that we recommend you consider when evaluating
multiple source code scanning and identification tools.

KNOWLEDGE BASE

Size of the Knowledge Base

This database stores information about open source software. The larger
the database is the more open source code you will be able to identify.

Frequency of Updates to the Knowledge Base

Compliance service and tools providers update their databases on a regular
basis. Some companies do the update three or four times per year, other
companies do it on at much higher frequency (up to daily). Ideally, you
would want to have the largest and most updated database to increase
your chances identifying newly created open source code.

DETECTION CAPABILITIES

Ability to Identify Source Code Snippets

This capability is one of the most critical features that a source code
scanner should have. When developers copy open source code into your
code base, they do so in two ways: whole components and snippets.
Copying a whole component is similar to downloading for example zlib
and adding it into your internal git repository, compiling it, and linking
other code into the produced zlib library. Now, the hard problem here is to

176

Open Source Compliance in the Enterprise

identify source code snippets that developers copied from an open source
component into proprietary or third party code.

Let us assume that a developer has copied 100 lines of code from zlib (just
to continue with the same example) into your proprietary component. Here
are some questions that will arise:

•	 Is your source code scanning engine capable of identifying those
100 lines and pinpointing their origin and license?

•	 Is your engine capable of identifying the true original source of those
100 lines? As you know, hundreds of open source components
use zlib code and integrate it in their code. Therefore, when you
scan source code containing snippets originating from zlib, those
100 lines will have hundreds of matches. If your scanning engine is
capable of pinpointing the original source (with original license) on
the top list (#1) of the match list, then you are gold. Many source
code scanning engines do not identify snippets, and among those
who do, very few are able to execute such a scenario.

Ability to Auto-Identify Source Code (Components and Snippets)

Most of the source code scanning engines, especially those with snippet
support, do generate a significant amount of false positives that need to
be investigated and resolved manually leading to endless hours of manual
labor. This is an ongoing problem with some of the most known products
in the market today. When evaluating such products, we recommend
prioritizing scanning engines capable of auto-identifying source code
snippets leading to the least amount of false positives that you need to
vet manually.

EASE OF USE
Ease of use is important because if all your engineers have access and
use the scanning tool (versus only compliance engineers), you may
avoid compliance problems way before these arise and before engineers
integrated the new code with your build system.

177

Open Source Compliance in the Enterprise

You would want an easy to use tool that minimizes the learning curve and
avoid the need for costly professional training.

OPERATIONAL CAPABILITIES

Use for M&A Purposes

Many of the compliance tool vendors impose limitations via their licensing
agreement on your ability to use the tool in scenarios outside just scanning
code in relation to ongoing development efforts. You need to be aware of
this fact and make sure that you are able to use the tool, for instance, for
any M&A transaction your company is considering.

Support for Different Audit Models

There are three audit models (discussed in the following chapter): traditional,
blind and DIY. All companies support the traditional model. Very few support
the DIY. Only one supports the blind audit model, which provides the most
secure, and private auditing model in M&A scenarios.

Programming Languages Agnostic

Some tools are, by admission of their creators, very good working with specific
programming languages, and not so with others. This is interesting, as you
would expect any scanning and identification engine to be agnostic to
programming languages. Most tools are not; very few are agnostic to languages.

Speed of Source Code Scans

Speed of source code scans is a pain point for many products on
the market today. For instance, one specific company designed and
developed their own database that is perfectly suitable for manipulating
the type of such data. As a result, they have lightning fast scans that are
exponentially faster than other existing tools. Furthermore, the speed of
scans is particularly useful when you integrate the scanning tool with your
continuous integration process.

178

Open Source Compliance in the Enterprise

INTEGRATION CAPABILITIES

Support for APIs and a CLI

Using a scanning tool is not limited to a UI-based usage. Ideally, companies
want to integrate the tool with their existing development and build systems
and processes. Such a scenario is doable if the scanning tool supports APIs
and a CLI that would allow system administrators from interacting with the
tool outside the UI.

SECURITY VULNERABILITY DETECTION CAPABILITIES

Size of the Security Vulnerabilities Database

This database contains information about known security vulnerabilites
that enable the tool to detect security related problems in the source code.
Please note the use of ”source code” and not specifically open source
code in the previous sentence. The reason being that developers may copy
code snippets from open source components into proprietary or third party
components. If the copied code contained a known security vulnerability,
then when you scan the proprietraty component, your engine should be
able to flag the vulnerability.

Frequency of Updates to Security Vulnerability Database

Service providers update their databases on a regular basis. The more
frequent the update cycle, the better it is in term or finding vulnerabilities as
soon as they have been identified.

Sources of Security Vulnerability Information

Multiple sources can be used to populate the database of security
vulnerabilities in open source components. When evaluating compliance
tools that offer this service, we recommend you investigate this aspect and
explore the actual mechanics of the updates and the various sources (direct
and indirect) used to collect information on security vulnerabilities and on
which basis recommendations are presented to fix those vulnerabilities.

179

Open Source Compliance in the Enterprise

Support for Advanced Vulnerability Discovery

This specific feature is not compliance related. However, since most
compliance tools have access to source code, vendors started integrating
the ability to flag security vulnerabilities.

There are two methods to do the discovery of security vulnerabilities:
Traditional and smart (author’s own classification). Following the traditional
method, the scanning engine discovers that you are using zlib 1.2.11
(fictional example) and at the same time, the engine is aware that this
specific version of zlib has a security vulnerability. At this point, the user of
the tool is notified via a visual warning of some sort (depends on the specific
tool) that the tool has discovered a vulnerability and in some cases the tool
will offer a recommendation on how to fix it (upgrade version or a patch is
now available).

This is a good start but it turns a blind eye the most common use of open
source software: snippets. The second most interesting method, the smart
method, works at snippet level to discover security vulnerabilities. Let us
examine this scenario. A developer copies 100 lines from zlib 1.2.11 (again
fictional example) into your proprietary source code base.

You ran the scan and the tool identifies the 100 lines to be originating from
zlib 1.2.11 and flags that those lines contain a vulnerability, with pointer to
additional information and suggestions to resolve the issue.

The smart method is also easier to automate in a development process, as
you actually know that you use vulnerable code. If a scanning engine does
not support snippet discovery, then it is extremely hard, if not impossible for
it to identify security vulnerability copied from one body of code into another.

COST
Cost is a vague metric as most focus in put on the yearly licensing cost of the
tool, while there are many other hidden costs to evaluate that we explore next.

180

Open Source Compliance in the Enterprise

Infrastructure Cost

IT infrastructure costs related to hosting the solution or using it via cloud.
It involves the usage of servers that customers need to buy, set up and
maintain, including the cost to upgrade that infrastructure and depending on
its size, the cost of a dedicated system administaror.

Operational Cost

Cost related to managing the results that the tool provides. That involves
inspecting and interpreting the results and take according action. A tool that
does auto identification of false positives will lower the cost associated with
labor needed to manually identify those thousands of false positives.

Licensing Cost

The cost of the yearly software license for using the tool (cost per seat,
unlimited seats), cost to access to SDK so you can integrate your internal
tools with the scanning engine, and possibly the cost of any private
customization that you want to introduce to fit your needs.

Integration Cost

Integration costs are hard to estimate but they typically evolve about the
ability to integrate the tool into your workflows and processes with minimal
disruptions.

Lock-in Cost

Companies often ignore or do not pay enough attention to the lock-in factor
and costs associated with building the whole compliance environment
around a specific tool. When choosing a new tool, we recommend putting
enough consideration in this aspect.

OTHER METRICS
In addition to the previousely discussed metrics, there are others that
deserve attention when evaluating soruce coude scanning and identfying

181

Open Source Compliance in the Enterprise

tools. They include advanced reporting capabilities, ability to incorporate
company policy with the tool allowing easier flagging for what’s allowed
for ur or not based on integrated policy, ability to generate the applicable
notices for the open source software bill of material, and the option to do
modular installation and avoid the installation of various module (for instance
security related or others) that are not of interest to you.

CONCLUSION
This chapter was created out of necessity and due to a lack of a unified way
to evaluate source code scanning and license identifications tools. Table 11
(next page) provides a visual summary of these metrics. We hope that you
find them helpful in capturing the important aspects of such tools when you
are embarking on an evaluation journey of multiple tools and trying to decide
which tool is more suitable for your needs and meets your requirements.

If you have suggestions for other metrics that should be covered in this
chapter, please feel free to contact the author with your recommendation via
http://www.ibrahimatlinux.com/contact.html.

Table 11. Summary of the key metrics used in evaluating source code scanning and

license identification tools

Metric Specifics

Knowledge Base Size
Frequency of update

Detection Capabilities Whole components
Partial snippets
Ability to auto-identify code with proper origin and
license

Ease of use Intuitive, requires minimal amount of training
Operational Capabilities Speed of scans

Ability to use for M&A scans (no licensing lock on
usage models)
Support for different audit models
Programming language agnostic

http://www.ibrahimatlinux.com/contact.html

182

Open Source Compliance in the Enterprise

Metric Specifics

Integration Capabilities Integration with build systems via APIs and a CLI
Integration of company compliance policies within
the tool

Security Vulnerabilities
Database

Size of database
Frequency of update
Sources of vulnerabilities information
Research validating vulnerabilities’ alerts

Advanced Discovery
Methods

Support for advanced vulnerability discovery (i.e.
identifying a vulnerability when vulnerable code was
copied into a new component)

Cost Infrastructure cost
Operational cost
Licensing cost
Integration cost
Lock-in cost
Cost of engineering customization

Deployment models On-site, Cloud, Hybrid

Other Modular installation
Generation of required notices
Reporting capabilities

183

Open Source Compliance in the Enterprise

Chapter 13
OPEN SOURCE AUDITS IN MERGER AND
ACQUISITION TRANSACTIONS

INTRODUCTION
We live in an era defined by software. Virtually everything we do on a
daily basis is in some way planned, shaped, analyzed and managed by
software. Within that large software umbrella, open source software is
king. Companies across all industries are racing to use, participate in, and
contribute to open source projects for the various advantages they offer,
from the ability to leverage external engineering resources that accelerate
time to market, to enabling faster innovation, and having capacity to focus
on differentiating values.

The saying “Open Source is Eating the Software World” also applies to
corporate transactions, as virtually any technology acquisition will involve
software in some form. The software due diligence process, in which the
acquirer performs a comprehensive review of the target’s software and
their compliance practices, is becoming a standard part of any merger or
acquisition. During this process, it is common to come across open source
software, which presents a set of verification challenges that are different
from proprietary software. In this chapter, we provide an overview of the
open source audit process in M&A transactions and offer recommendations
on how to be better prepared for such a corporate transaction.

COMMON OPEN SOURCE USAGE SCENARIOS
Before diving into the open source due diligence process, it helps to
understand the various ways developers incorporate open source software
into the development process and build systems. This applies to situations
where the company knowingly or unknowingly incorporates open source
software into their source code base. The most common use scenarios of
open source software are incorporation, linking, and modification.

184

Open Source Compliance in the Enterprise

Making changes to open source components, or injecting open source
code in proprietary or third party components, can affect the way that audit
service providers discover and report such code.

When engaging with an open source audit provider, it is often helpful to
understand how their discovery approach captures open source code.

INCORPORATION
A developer may use a complete open source component or copy portions
of a component into their software product’s codebase. Since open source
licenses come with a variety of obligations that may affect the company’s
legal responsibilities and the proprietary nature of their code, companies
should track, declare and approve (internally) all such incorporation and use
of open source code.

Figure 30. Incorporating open source code (green) within another body of code (blue)

The goal of a source code audit is to find all open source software
incorporated into a software codebase, to avoid unpleasant surprises post-
acquisition. The likelihood of undeclared incorporation increases when the
target has not had sufficient developer training on open source compliance,
or has relied upon transient worker like contractors or interns who do not
maintain long-term records.

185

Open Source Compliance in the Enterprise

The incorporation scenario is often not obvious when human eyes look at
source code, but source code scanning tools with the ability to discover
and match snippets can easily uncover such incorporation.

LINKING
Linking is a very common scenario for instance when using open source
libraries. In this scenario, a developer may link an open source software
component with their software component.

Several terms can refer to such a scenario such as static/dynamic linking,
combining, packaging, or creating interdependencies. It is often easy to
detect linking when visually scanning source code because libraries are
generally included at the beginnings of files and the linked code is likely to
be in a separate named directory or file.

Figure 31. Linking open source code (green) within another body of code (blue)

Linking differs from incorporation in that the source code is kept separate,
rather than being copied into a single combined form. Linking interactions
happen either when the code is compiled into a single executable binary
(static linking), or when the main program runs and calls the linked program
(dynamic linking).

186

Open Source Compliance in the Enterprise

MODIFICATION
This is a very common scenario where a developer may make changes to
an open source software component, including:

•	 Adding/injecting new code into the open source software component.

•	 Fixing, optimizing or making changes to the open source software
component.

•	 Deleting or removing code.

Figure 32. Modifications applied to open source code (green)

NOTE ON DEVELOPMENT TOOLS

It is important to be aware that certain development tools may perform
some of these operations transparently. For example, a developer may use
a development tool that automates certain portions of the development
process. Examples of this include graphics frameworks that provide user
interface templates, game development platforms that provide physics
engines, or software development kits (SDKs) that provide connectors to
cloud services. In order to provide these services, a tool must usually inject

187

Open Source Compliance in the Enterprise

portions of its own code into the developer’s work product when the code
is built. The license for such injected code by development tools should be
verified especially given the resulting work is often statically linked.

OPEN SOURCE AUDITS
Every M&A transaction is different, but the need to verify the impact
of acquiring open source obligations is a constant among all such
transactions. Companies carry out open source audits to understand the
depth of use and the reliance on open source software. In addition, such
audits offer great insights about any compliance issues and even the
engineering practices of the target company.

WHY CONDUCT AN OPEN SOURCE AUDIT?

Open source licenses may impose restrictions on how you can use and
redistribute software. These may be incompatible with the acquiring
company’s business, and should be uncovered early. Examples of ways the
presence of open source software can affect the acquired assets include:

•	 Open source licenses usually impose certain obligations that you
must fulfill when you ship a product containing open source code.

•	 Some open source licenses require notices in documentation, or
have restrictions for how you promote or advertise a product in
relation to the open source code used in it.

•	 Failure to satisfy open source license obligations can lead to
possible litigation, expensive re-engineering, product recalls, and
bad publicity.

SHOULD YOU COMMISSION AN OPEN SOURCE AUDIT?

One common question is whether you need to commission an open
source at all. The answer to that question differs by company, purpose of
acquisition, and size of the source code. For instance, for small acquisitions,
some companies (acquirers) prefer to just review the open source bill of
materials (BoM) provided by the target (assuming it is available), and have

188

Open Source Compliance in the Enterprise

a discussion with their engineering lead about their open source practices.
Even if the purpose of the acquisition is to acquire the talent, an audit can
help uncover whether there are undisclosed liabilities due to historical
license obligations from products that already shipped.

AUDIT INPUTS AND OUTPUTS

The audit process has one primary input and one primary output (Figure
33). The input to the process is the software stack subject to the M&A
transaction. This includes proprietary, open source and third party
software. On the end side of the process, the primary output is a detailed
open source software bill of material that lists all open source software
(components and snippets), their origin and confirmed licenses.

Figure 33. Inputs and outputs of the audit process

ASSESSING THE SCOPE OF AN AUDIT JOB

The size, scope, and cost of an audit varies by transaction, and generally
increases with source code size and complexity. To provide a quote (cost
and time) for an open source audit the auditor needs to get some basic
understanding of the size and characteristics of the code base, as well as
the urgency of the project.

The first questions from the auditor are specific to code metrics, such as
the size of the source code base, the number of lines of source code,
and the number of files that are included in the audit. They will also ask if
the codebase consists exclusively of source code, or if it includes binary
files, configuration files, documentation, and possibly other file formats.

189

Open Source Compliance in the Enterprise

Sometimes, it is also helpful for the auditor to know the file extensions
subject to the audit.

Mature companies generally keep records about the open source
components and versions used in their products and projects. Such
information is very helpful and increases the understanding of the auditor on
the expected workload.

Because audit price discussions happen early in the process based on
size and scope, the acquirer may not have access to all the information
described above.

At the very minimum, the auditor needs to understand the number of files
to be scanned before proceeding, although additional information will
help refine the estimates. When the auditor has enough information to
understand the scope of the work, they will also need to understand the
urgency, as this has a significant impact on the cost of an audit.

AUDIT METHODS
When performing an open source audit there are certain features in the tools
that provide meaningful value to the acquirer. One of the most important
features is the ability to search for open source code snippets that have
been mixed into the proprietary code of the target company, and vice versa.
Another feature is the ability to eliminate false positives from the audit results
minimizing the amount of labor needed to so manually.

There are three audit methods:

•	 Traditional audit, in which the auditor gets complete access to all the
code and executes the audit either remotely or on site.

•	 Blind audit, in which the auditor does the work remotely and without
ever seeing the source code.

•	 “Do It Yourself” audit, where the target company or the acquirer
performs most of the actual audit work themselves using the tools
with the option for a random verification of the results performed by
audit tool provider.

190

Open Source Compliance in the Enterprise

TRADITIONAL AUDIT METHOD

This method is the original method of source code scanning for open
source compliance purposes and all audit service providers support it.
Traditional audits are those where a compliance auditor from a 3rd party
auditing company gets access to the source remotely via a cloud system or
physically while visiting on site and performs the source code scan.

Figure 34 illustrates the audit process following the traditional auditing
method. Please note that the process may vary slightly from one service
provide to another.

Figure 34. Illustration of generic audit process in the traditional audit method

191

Open Source Compliance in the Enterprise

A typical traditional audit process follows these steps:

•	 Auditor sends questions to the acquirer to have a better
understanding of the job.

•	 Acquirer responds allowing auditor company to have a better
understanding of the scope and audit parameters.

•	 Auditor provides quote based upon the responses.

•	 Agreement is reached on the quote. Next is singing service
agreement, statement of work, non-disclosure agreement, etc.

Please note that “Start” in Figures 33, 34 and 35 assumes an actual start
of the audit process when all partied involved have signed the contract and
accompanying agreements.

•	 Auditor accesses to the target’s code via secure cloud upload, or
through a visit to the company for an on-site audit.

•	 Auditor scans the target’s source code, cleans up the false
positives, and evaluates the results.

•	 Auditor generates the report and delivers it to the client.

•	 A call or a face-to-face meeting follows to review the results with the
auditor and address any questions.

Most of not all audit service providers support this audit method with varying
degrees related to ability to discover snippets, support for programming
languages, etc. This audit method allows the opportunity to collect multiple
bids for the same audit job and the ability to choose the best bid given your
requirements. Following this model, the target company must be willing
to transfer the code to the auditors or allow them to visit your offices to
complete the job on-site.

BLIND AUDIT

The blind audit method was pioneered by FOSSID, a Stockholm based
company, to address the confidentiality requirements in M&A transactions.

192

Open Source Compliance in the Enterprise

Using their proprietary technology, FOSSID have the ability to perform audits
and generate reports without having their engineers look at the source code
subject to the audit.

Figure 35 illustrates the blind audit process designed to provide
confidentiality of source code in M&A transactions. One major advantages
of a blind audit include the ability for the auditor to complete the review
without having access to the source code. In addition, with sufficient
precautions by the acquirer, the auditor may also not gain awareness of the
target’s identity offering a high level of confidentiality. As far as the author
is aware, outside of FOSSID, there are no other auditing service providers
offering such or comparable service.

Figure 35. Illustration of a blind audit process

DIY AUDIT

The Do-It-Yourself (DIY) audit provides the acquirer or the target company
time-limited access to the compliance cloud tools, enabling them to run the

193

Open Source Compliance in the Enterprise

scan themselves. They can then perform the audits internally with complete
access to the knowledge base and all reporting facilities. This approach is
particularly interesting for companies that have in-house employees with
sufficient experience to interpret scan results and suggest remediation
procedures. It can quickly become more cost-effective for companies
that go through the M&A process several times per year. An independent
certification can be performed to verify the findings, to further secure the
integrity of the audit.

Figure 36 (next page) illustrates the DIY audit method using the tools from
FOSSID. This approach has several advantages such as the ability to
start the audit as soon as needed since it uses internal resources and not
dependent on the availability of third party auditors, potentially shortening
the timelines and reducing an external source of cost. Compliance concerns
can be addressed immediately, since the people who have direct access to
the code are performing the audit.

Finally, to verify the correctness and completeness the audit, the tool
provider can perform a certain number of verification to that end. For
instance, as part of their DIY offering, FOSSID offers the random verification
of 1% of the files set forth to be audited by the target company.

194

Open Source Compliance in the Enterprise

Figure 36. Illustration of a DIY audit process

NOTE ON THE FINAL REPORT

You can tune or configure many of the auditing tools can to flag or highlight
potential scenarios that you can consider possible issues. After viewing
the results carefully, you might find most of them to be non-issues. So be
prepared for what might appear to be a lot of noise. The noise may come
from things such as leftover code that is in the code tree but not used,
sample code, or other. Therefore, the initial report may be lengthy and
unfiltered and you should be prepared to invest time to filter the report to
find the real issues.

As for SPDX, source code auditor often can provide an SPDX conformant
report. Therefore, if you would like to receive one, you will need to request it
early on, due to possible cost implications.

195

Open Source Compliance in the Enterprise

SECURITY AND VERSION CONTROL
It is a generally accepted truth that software ages like milk, not wine.
Security vulnerabilities are a concern with all code whether it is open source
or not. However, in open source projects these vulnerabilities are publicly
exposed as well as the process of fixing them. Such an exposure can
happen before or after the fix is implemented, and outdated open source
code could potentially contain vulnerabilities that are actively exploited in
the wild. While security and version control are not part of the open source
compliance due diligence process, companies providing source code
scanning services may also offer a service mapping identified open source
components against known open source security vulnerabilities.

PRE- AND POST-ACQUISITION REMIDIATION
By this point, the acquiring company should have a clear idea how the
target uses and manages open source software, and how successful they
have been at satisfying their open source license obligations. The acquirer
and target should use this information to negotiate remediation for any open
source compliance issues. If any issues are uncovered in the audit, there are
a few options for resolving them as a part of the pending transaction. The
first option is to remove any offending code. If the open source software
only augments proprietary code, it may be possible to eliminate it. Another
option is to design around the offending component, or re-write any code
using cleanroom techniques. If the section of code is truly essential or you
have already previously distributed it, the only remaining option is to bring
the code into compliance. The cost of such remediation efforts may be a
factor to consider.

Whatever option you choose, it is crucial to identify the individuals who
participated in incorporating the open source code, and to get them
involved in the remediation effort. They might have additional documentation
or knowledge that can be useful in resolving any issues.

196

Open Source Compliance in the Enterprise

PREPARING FOR AN AUDIT AS THE ACQUISITION TARGET

Passing an open source compliance audit is not hard if you are prepared.
However, it is very unlikely to happen if you only begin preparing when an
acquirer shows interest.

The open source compliance activities go hand-in-hand with your daily
business and development activities. The objective of these activities is to
ensure the company tracks all open source components, and respects
open source license obligations resulting from your use of these open
source components. These same measures can be of great help if your
company becomes a target for a corporate transaction, as it minimizes the
risk of surprises.

KNOW WHAT’S IN YOUR CODE

This is the golden rule of compliance. You need to maintain a complete
software inventory for all software components including their origin and
license information. This covers software components created by your
organization, open source components, and components originating from
third parties. The most important point is having a process for identifying
and tracking open source components. You do not always need a complex
compliance program; however, you should have five basic elements: policy,
process, staff, training, and tools. We have discussed these elements earlier
in this book.

BE IN COMPLIANCE

If you have shipped products containing open source software, whether
intentionally or not, then you will need to comply with the various licenses
governing those software components. Hence, the importance of knowing
what is in your code, as a complete bill of materials makes compliance
much easier.

Being in compliance is not a simple task, and it varies from product to
product based upon the licenses and the structure of the code.

 At a high level, being in compliance means that you:

197

Open Source Compliance in the Enterprise

•	 Track all use of open source software.

•	 Compile a finalized open source BoM for all software in the shipping
image of product.

•	 Fulfill the obligations of the open source licenses.

•	 Repeat the process every time you issue a software update.

•	 Respond quickly and seriously to compliance inquiries.

USE LATEST SOFTWARE RELEASES

One of the benefits of a comprehensive compliance program is that it is
easier to find products with insecure versions of open source components
and replace them. Most source code scanning tools now provide
functionality to flag security vulnerabilities disclosed in older software
components. One important consideration when upgrading an open source
component is to ensure that the component retains the same license as the
previous version. Open source projects have occasionally changed licenses
on major releases. To avoid a situation where you are using a version with
security vulnerabilities, companies are encouraged to engage with open
source project communities. It is not reasonable or feasible to be active in all
of the open source projects you use; therefore, a certain level of prioritization
is needed to identify the most critical components. There are various levels
of engagement, ranging from joining mailing lists and participating in the
technical discussions, to contributing bug fixes and small features, to major
contributions. At minimum, it is very beneficial for corporate developers
working on a specific open source project to subscribe to and monitor the
mailing list for any reports related to security vulnerabilities, and available fixes.

MEASURE UP YOUR COMPLIANCE EFFORTS

The easiest and most effective first step for organizations of all sizes
is to engage with the OpenChain Project and to obtain “OpenChain
Conformant” (https://www.openchainproject.org/conformance) status.
Companies can do that by filling out a series of questions either online
(https://certification.openchainproject.org/) or manually (https://wiki.

https://www.openchainproject.org/conformance
https://certification.openchainproject.org/
https://wiki.linuxfoundation.org/_media/openchain/openchain_conformance_conformance_check_1.1.pdf

198

Open Source Compliance in the Enterprise

linuxfoundation.org/_media/openchain/openchain_conformance_
conformance_check_1.1.pdf). The questions used for OpenChain
Conformance help to confirm that an organization has created processes or
policies for open source software compliance.

OpenChain is an industry standard, similar to ISO 9001. It focuses on the
“big picture,” with precise processes and policy implementations up to each
individual organization. OpenChain Conformance shows that open source
compliance processes or policies exist, and that further details can be
shared when requested by a supplier or customer. OpenChain is designed
to build trust between organizations across the global supply chain.

The Linux Foundation’s Self-Assessment Checklist is an extensive checklist
of compliance best practices, in addition to elements that must be available
in an open source compliance program to ensure its success. Companies
can use this resource as an internal, self-administered checklist to evaluate
their compliance in comparison to compliance best practices.

PREPARING FOR AN AUDIT AS THE ACQUIRING
COMPANY
As an acquirer, there are actions to take and decisions to make before the
audit is commissioned, and then after you receive the results.

CHOOSE THE RIGHT AUDIT MODEL AND AUDITORS FOR YOUR
NEEDS

As previously discussed, there are three primary audit methods that can
be used and you will need to decide which is most suited to your specific
situation, given the parameters you are working with.

PRIORITIZE WHAT YOU CARE ABOUT

The audit report may provide a significant amount of information, depending
on the complexity of the scanned code. It is important to identify which
licenses and use-cases are regarded as critical.

https://wiki.linuxfoundation.org/_media/openchain/openchain_conformance_conformance_check_1.1.pdf
https://wiki.linuxfoundation.org/_media/openchain/openchain_conformance_conformance_check_1.1.pdf

199

Open Source Compliance in the Enterprise

ASK THE RIGHT QUESTIONS

The open source audit report offers a lot of information about the target’s
source code and the licenses involved. However, there are many other
data points that will require further investigation to get clarifications or
confirmations on compliance related concerns. In this section, we offer a
collection of questions as a starting point to frame what is important to you,
and what questions you should address with the target company.

Some of the questions you need to address as part of this process include:

•	 Has the target used code with licenses that could jeopardize the IP
of the target or acquirer?

•	 Are there any snippets with unknown origin and/or unknown
license?

•	 Are the target’s open source compliance practices sufficiently
mature and comprehensive?

•	 Does the target company track known vulnerabilities in their open
source components?

•	 When distributing products, does the target provide all necessary
materials to satisfy open source license obligations (written offer,
various required notices, and source code when applicable)?

•	 Does the target company’s compliance process aligned with the
speed of development to meet product release schedules?

•	 Does the target have a process in place to respond to all internal
and external requests for source code in a timely manner?

IDENTIFY AND SOLVE CONCERNS

In some cases, an open source audit may reveal instances of licenses or
compliance practices that are not acceptable to the acquirer. The acquirer
can then request these instances to be mitigated as a condition for closing.
For instance, the target company may use a code component that comes
license under “License A”, but the acquiring company has a strict policy

200

Open Source Compliance in the Enterprise

against using any source code licensed under “License A”. In such a
situation, both parties will need to discuss and figure out a possible solution.

POST-ACQUISITION IMPROVEMENT PLAN

This is especially important when the acquirer is a large company buying a
smaller startup that will continue to operate as a subsidiary. In this scenario,
the acquirer often helps the target establish a formal compliance policy
and process, provides training on their own practices, and offers ongoing
guidance and support.

CONCLUSION
Open source due diligence is generally one task in a long list of tasks that
need to be successfully completed in an M&A transaction. However, it is still
an important aspect of the general due diligence exercise given the central
role of software and potential IP risks. While the open source due diligence
may seem a lengthy process, it often can be completed quickly, especially if
both parties are prepared, and working with a swift compliance service provider.

How can you be prepared?

If you are the target, you can maintain proper open source compliance
practices by ensuring your development and business processes include:

•	 Identifying the origin and license of all internal and external software.

•	 Tracking open source software within the development process.

•	 Performing source code reviews for new or updated source code
entering the build.

•	 Fulfilling license obligations for open source components when a
product ships or when software is updated.

•	 Offering open source compliance training to employees.

201

Open Source Compliance in the Enterprise

If you are the acquirer, you should know what to look for and have the skills
on-hand to address issues quickly:

•	 Decide with the target company on the appropriate audit method to
use, and which third party service provider to engage for the audit.
Note that some compliance auditing service providers do not have
ability to do blind testing, some may support the DIY, and others do
not have the ability to discover code snippets.

•	 If possible, you should aim for multiple bids for the project. It is not
just about the cost, but also about having the precise output that will
help you address any concerns you may have.

•	 Make sure you have the internal expertise to compare bids equally
and fairly, and that they include all audit parameters such as:

•	 Audit method, inputs and outputs

•	 Primary contact persons at target and acquirer for speedy
discussions of issues that arise

•	 Timeline and logistics especially if it involves an on-site visit

•	 Confidentiality parameters

•	 Code vulnerabilities and version control analysis

•	 Cost, normal process and expedited

Open source compliance is an ongoing process, not a destination.
Maintaining good open source compliance practices enables companies to
be ready for any scenario where software changes hands, from a possible
acquisition, a sale, or product or service release. For this reason and many
others, companies are highly encouraged to invest in building and improving
upon their open source compliance programs.

202

Open Source Compliance in the Enterprise

REFERENCES

The Linux Foundation Open Compliance Program
https://compliance.linuxfoundation.org/

Free E-book: Practical GPL Compliance
Published by The Linux Foundation, Practical GPL Compliance is a compliance guide for startups, small
businesses, and engineers, particularly focused on complying with the versions of the GNU General
Public License (GPL). Its goal is to provide practical information and quickly address common issues.
https://www.linuxfoundation.org/news-media/research/practical-gpl-compliance

OpenChain
OpenChain identifies common best practices in open source compliance that should be applied as a
standard across a supply chain
https://openchainproject.org

OpenChain Curriculum
The OpenChain Curriculum help organizations meet the training and process requirements of the
OpenChain Specification. It is also a general open source training and – because of its public domain
licensing – you can re-use it for internal or external purposes without any restrictions.
https://wiki.linuxfoundation.org/openchain/curriculum

Free Training: Compliance Basics for Developers
A free open source compliance course from the Linux Foundation targeted for developers.
https://training.linuxfoundation.org/linux-courses/open-source-compliance-courses/
compliance-basics-for-developers

Software Package Data Exchange® (SPDX)
SPDX is a set of standard format for communicating the components, licenses and copyrights of
software packages.
https://spdx.org/

Self-Assessment Checklist
The Linux Foundation has compiled this extensive checklist of compliance practices found in industry-
leading compliance programs. Companies can use this checklist as a confidential internal tool to assess
their progress in implementing a rigorous compliance process and to help them prioritize process-
improvement efforts.
https://go.linuxfoundation.org/self-assessment-checklist

https://compliance.linuxfoundation.org/
https://www.linuxfoundation.org/news-media/research/practical-gpl-compliance
https://openchainproject.org
https://wiki.linuxfoundation.org/openchain/curriculum
https://training.linuxfoundation.org/linux-courses/open-source-compliance-courses/compliance-basics-for-developers
https://training.linuxfoundation.org/linux-courses/open-source-compliance-courses/compliance-basics-for-developers
https://spdx.org/
https://go.linuxfoundation.org/self-assessment-checklist

203

Open Source Compliance in the Enterprise

TODO Group
TODO is an open group of companies that collaborate on practices, tools, and other ways to run
successful and effective open source programs.

http://todogroup.org/

Using Open Source
This enterprise guide by The Linux Foundation offers practical guidance on using open source software
in a legal and responsible way.
https://www.linuxfoundation.org/resources/open-source-guides/using-open-source-code/

A Template for Approval Request Form For The Use of Free and
Open Source Software
This document is part of the free resources made available by The Linux Foundation Open Compliance
Program. It offers a template for the Approval Request Form used by developers to request approval
to use Free and Open Source Software (FOSS) in a commercial product. The company’s Open Source
Review Board (OSRB) reviews the submission and determines approval. In most cases, the submission,
review and approval of such requests is managed via an online system that is part of the company’s
FOSS compliance management process.
https://www.linuxfoundation.org/events/a-template-for-approval-request-form-for-the-use-of-
free-and-open-source-software/

Generic FOSS Policy
Companies using FOSS often create a company-wide policy to ensure that all staff is informed of how to
use FOSS (especially in products), to maximize the impact and benefit of using FOSS, and to ensure that
any technical, legal, or business risks resulting from that usage are properly mitigated. This document
is a free resource available from the Linux Foundation under the Open Compliance Program. It offers
a generic FOSS policy that companies can use as starting point in creating their own FOSS policy. It
provides a template policy that focuses on governing FOSS usage in externally distributed products and that
can be customized to the company’s specific needs.
https://wiki.linuxfoundation.org/_media/openchain/lf_compliance_generic_foss_policy.pdf

http://todogroup.org/
https://www.linuxfoundation.org/resources/open-source-guides/using-open-source-code/
https://www.linuxfoundation.org/events/a-template-for-approval-request-form-for-the-use-of-free-and-open-source-software/
https://www.linuxfoundation.org/events/a-template-for-approval-request-form-for-the-use-of-free-and-open-source-software/
https://wiki.linuxfoundation.org/_media/openchain/lf_compliance_generic_foss_policy.pdf

204

Open Source Compliance in the Enterprise

ABOUT THE AUTHOR

Ibrahim Haddad (Ph.D.) is Vice
President of Strategic Programs at
the Linux Foundation. In this role, he
works with the largest technology
companies and open source
communities to facilitate a vendor-
neutral environment for advancing
the Linux and open source platform.

Twitter: @IbrahimAtLinux
Web: IbrahimAtLinux.com

CONTRIBUTORS

Shane Coughlan is an expert in communication, security and business
development. His experience includes engagement with the enterprise,
embedded, mobile and automotive industries. Shane has extensive
knowledge of open source governance, internal process development,
supply chain management and community building. He currently leads the
OpenChain Project community.

Twitter: @opendawn

Kate Stewart works at the Linux Foundation on Strategic Programs. She
has over 30 years of experience working as a developer, release manager,
and director of product management in the embedded ecosystem before
joining the Linux Foundation. Managing open source software development
teams in the US, Canada, UK, India, and China has taught her that we need
to be pragmatic about open source compliance, and get it automated,
which was why she worked with others to start SPDX.

Twitter: @_kate_stewart

https://twitter.com/ibrahimatlinux
http://IbrahimAtLinux.com
https://twitter.com/opendawn
https://twitter.com/_kate_stewart

	Chapter 1
	
INTRODUCTION TO OPEN SOURCE COMPLIANCE
	A CHANGING BUSINESS ENVIRONMENT
	ENTER OPEN SOURCE COMPLIANCE
	Benefits of Ensuring Open Source Compliance

	FAILURE TO COMPLY
	Intellectual Property Failures
	License Compliance Problems
	Process Failures

	LESSONS LEARNED
	Ensure Compliance Prior to Product
Shipment/Service Launch
	Non-Compliance is Expensive
	Relationships Matter
	Training is Important

	Chapter 2
	ESTABLISHING AN OPEN SOURCE
MANAGEMENT PROGRAM
	OPEN SOURCE COMPLIANCE PROGRAM
	Compliance Strategy
	Inquiry Response Strategy
	Policies and Processes
	Compliance Teams
	Tools
	Web Presence
	Education
	Automation
	Messaging
	Industry Initiatives

	COMPLIANCE CHALLENGES AND SOLUTIONS
	Long-Term Goals versus Short-Term Execution
	Communicating Compliance
	Establishing a Compliant Software Baseline
	Maintaining Compliance
	Institutionalization and Sustainability

	Chapter 3
	ACHIEVING COMPLIANCE: ROLES
AND RESPONSIBILITIES
	OPEN SOURCE REVIEW BOARD (OSRB)
	LEGAL
	ENGINEERING AND PRODUCT TEAMS
	COMPLIANCE OFFICER
	OPEN SOURCE EXECUTIVE COMMITTEE
	DOCUMENTATION
	LOCALIZATION
	SUPPLY CHAIN
	IT
	CORPORATE DEVELOPMENT

	Chapter 4
	OPEN SOURCE COMPLIANCE PROCESS
	EFFECTIVE COMPLIANCE
	ELEMENTS OF AN END-TO-END COMPLIANCE PROCESS
	Step 1 – Identification of Open Source
	Step 2 – Auditing Source Code
	Step 3 – Resolving Issues
	Step 4 – Reviews
	Step 5 – Approvals
	Step 6 – Registration
	Step 7 – Notices
	Step 8 – Pre-Distribution Verifications
	Step 9 – Distribution
	Step 10 – Final Verifications

	Chapter 5
	COMPLIANCE PROCESSES AND POLICIES
	POLICY
	PROCESS
	Source Code Scan
	Identification and Resolution
	Legal Review
	Architecture Review
	Final Review

	PROCESS STAGES’ INPUTS AND OUTPUTS
	Source Code Scan Phase
	Identification and Resolution Phase
	Legal Review Phase
	Architecture Review Phase
	Final Approval Phase

	
DETAILED USAGE PROCESS
	INCREMENTAL COMPLIANCE PROCESS
	OSRB USAGE FORM
	Rules Governing the OSRB Usage Form

	AUDITING
	SOURCE CODE DISTRIBUTION
	Distribution Incentives
	Distribution Policy and Process
	Distribution Methods and Modes
	Distribution Checklists
	Pre-Distribution Checklist
	Post-Publication Checklist
	Written Offer

	Chapter 6
	RECOMMENDED PRACTICES
	COMPLIANCE PROCESS
	Identification Phase
	Source Code Auditing
	Resolving Issues
	Architectural Review
	Approvals
	Notices
	Verifications

	TOOLS AND AUTOMATION
	Source Code Identification Tools
	Project Management Tools
	Software Bill of Material (BOM) Difference Tools
	Linkage Analysis Tool

	CHAPTER 7
	MANAGING COMPLIANCE INQUIRIES
	RESPONDING TO COMPLIANCE INQUIRIES
	Acknowledge
	Inform
	Investigate
	Report
	Close Inquiry
	Rectify
	Improve
	General Considerations
	Enforcement Activities With Varying Motivations

	CHAPTER 8
	OTHER COMPLIANCE-RELATED PRACTICES
	EMPLOYEE APPRAISAL
	WEB PORTALS
	MESSAGING
	TRAINING
	Informal Training
	Formal Training

	SOURCE CODE MODIFICATION CONSIDERATIONS
	NOTICES CONSIDERATIONS
	DISTRIBUTION CONSIDERATIONS
	USAGE CONSIDERATIONS
	ATTRIBUTION CONSIDERATIONS
	Attribution Types
	Presentation of Attributions

	SPECIFIC LICENSE OBLIGATIONS
	GENERAL GUIDELINES

	Chapter 9
	SCALING OPEN SOURCE LEGAL SUPPORT
	PRACTICAL LEGAL ADVICE
	LICENSE PLAYBOOKS
	LICENSE COMPATIBILITY MATRIX
	LICENSE CLASSIFICATION
	SOFTWARE INTERACTION METHODS
	CHECKLISTS
	CONCLUSION

	Chapter 10
	The OpenChain Project
	THE BUSINESS CASE FOR COMPLIANCE
	PROCESSES ACROSS ORGANIZATIONS
	THE PLACE OF THE OPENCHAIN PROJECT
	DEFINING KEY REQUIREMENTS OF QUALITY OPEN SOURCE COMPLIANCE PROGRAMS
	PROVIDING AN AVENUE TO CHECK CONFORMANCE WITH KEY PROCESSES
	SUPPORTING CONFORMANCE WITH EDUCATIONAL MATERIAL
	ENCOURAGING ADOPTION ACROSS MULTIPLE MARKET SEGMENTS
	GETTING INVOLVED

	Chapter 11
	Software Package Data Exchange® (SPDX®)
	INTRODUCTION
	SPDX License List
	SPDX License IDs
	SPDX Specification – Background
	Overview of an SPDX Document
	Document Creation Information
	Package Information
	File Information
	Snippet Information
	Other Licensing Information
	Relationships
	Annotations
	Tools and Other Resources for Sharing SPDX Documents
	Tools That Can Generate SPDX Documents
	Tools Able to Import SPDX Documents
	Help Improve SPDX

	Chapter 12
	EVALUATING SOURCE CODE SCANNING TOOLS
	KNOWLEDGE BASE
	DETECTION CAPABILITIES
	EASE OF USE
	OPERATIONAL CAPABILITIES
	INTEGRATION CAPABILITIES
	SECURITY VULNERABILITY DETECTION CAPABILITIES
	COST
	OTHER METRICS
	CONCLUSION

	Chapter 13
	OPEN SOURCE AUDITS IN MERGER AND ACQUISITION TRANSACTIONS
	INTRODUCTION
	COMMON OPEN SOURCE USAGE SCENARIOS
	INCORPORATION
	LINKING
	MODIFICATION
	OPEN SOURCE AUDITS
	AUDIT METHODS
	SECURITY AND VERSION CONTROL
	PRE- AND POST-ACQUISITION REMIDIATION
	PREPARING FOR AN AUDIT AS THE ACQUISITION TARGET
	PREPARING FOR AN AUDIT AS THE ACQUIRING COMPANY
	CONCLUSION
	REFERENCES

