
WHITEPA PER

Getting the Best
of all Worlds with
Zephyr RTOS:
Bare Metal Hardware Access,
Direct IRQ Handling and
Digital Signal Processing for
Cloud Connected Acoustic
Machine Monitoring
Eli Hughes, Principal at Wavenumber LLC.
AUGUS T 202 3

GETTING THE BEST OF ALL WORLDS WITH ZEPHYR RTOS 2

Contents
Battery Powered Acoustic Machine Condition Monitoring .. 4

MachineMailbox Vibration Sensor Interface .. 5

Direct Peripheral Access Approach ... 6
Step 1: Enable Zero Latency IRQs...8

Step 2: Mark your interrupt handler as a Direct IRQ ...8

Step 3: Link your IRQ handler to the Vector Table...9

The MachineMailbox DSP and Data Processing Approach ... 12

Circuit Current Measurements for Data Acquisition/Processing .. 15

Conclusion .. 16

GETTING THE BEST OF ALL WORLDS WITH ZEPHYR RTOS 3

In this article, we will explore an acoustic machine monitoring application built using the
Nordic NRF9160 and the Zephyr real-time operating system. We’ll demonstrate how to
get close to the “metal” and optimize low-level peripheral access, signal processing, and
efficient data packing for transmission to a cloud backend, all while leveraging Zephyr high-
level abstractions that help with rapid application development and overall portability, and
lifecycle management with its components. However, there are times when one must get
“to the metal” to achieve the highest performance metrics such as power consumption.
This article will show an acoustic machine monitoring application that uses Zephyr with the
Nordic NRF9160 cellular System-In-Package (SIP) combined with high-performance vibration
and temperature sensors.

While Zephyr is a very rich embedded development framework, it does not mean that you
have to give up any of the advantages of “bare metal” for high performance applications. In
fact, you can get the best of all worlds while having a development framework that scales
across projects, and this is what this article will be showing you. More specifically, we will
cover how to:

 ⊲ Access peripherals directly for minimal overhead

 ⊲ Have direct access to IRQ handlers to weave peripherals together in ways not supported
by the Zephyr driver model.

 ⊲ Use the Zephyr build system to bring in DSP libraries to implement acoustics & vibration
processing algorithms such as a power spectrum computation.

 ⊲ Apply direct peripheral access techniques to achieve the lowest sleep currents for industrial
IoT / battery powered applications.

GETTING THE BEST OF ALL WORLDS WITH ZEPHYR RTOS 4

Battery Powered Acoustic Machine Condition Monitoring
One of the best methods of implementing machine
health on critical, high value equipment is to analyze
the vibration of the machine in real-time. Using high
bandwidth accelerometers, it is possible to ascertain
the health and possible future failures of a critical
asset over time. Combining frequency domain analysis
with typical sensing modalities, such as temperature,
one can perform complicated sensor fusion and data
reduction at the point of measurement. Data fusion
and reduction at the “extreme edge” reduces the
amount of data needed to be transmitted to a backend
improving both transmission costs and battery life.
Cloud based machine learning and trending algorithms
can have access to just the right amount of data
to balance complexity in the sensing node and the
backend processing.

Cellular System in Package (SIP) Technologies, such as
the Nordic nRF9160, offer a high level of integration
enabling densely packaged sensor solutions. In addition
to enabling point connectivity, the nRF offers sufficient
processing power to handle complex sensor fusion and
data reduction tasks.

Prior to Nordic nRF9160 and open source RTOS solu-
tions such as Zephyr, cellular based industrial IOT
development could be consuming and difficult. A typical
method for connecting sensors is to use an intermediate
wireless network. It is common to network sensors via
a local wireless connection. Raw sensor data is collected
into a “bridge”. The bridge may have more processing
capabilities and a high-level operating system such as
Linux to deal with intricacies of modern, secure connec-
tivity. With Zephyr and the nRF9160, it is possible to do
all precision measurements and data processing in-situ
and securely connect to a backend without the need
for an intermediate bridge. This point of measurement
connectivity approach can greatly simplify deployment
of sensors for predictive maintenance and condition
based maintenance applications.

Furthermore, the nRF9160 can be battery powered
using ruggedized chemistries such as lithium thionyl
chloride (Li-SoCl2) for years of operation in the
most demanding environments. An example of a
point of measurement industrial IoT sensor is the
“MachineMailbox” shown in figure 1.

FIGURE 1. THE MACHINEMAILBOX : AN ACOUSTIC MACHINE MONITORING SENSOR
USING THE NORDIC NRF9160 AND ZEPHYR.

The MachineBox combines the nRF9160, an Analog
Devices ADXL355 3-Axis MEMs accelerometer and an
ADT7420 temperature sensor.

FIGURE 2. NRF9160 BASED ACOUSTIC MACHINE CONDITION MONITORING
SENSOR USING THE ADXL355 AND THE ADT7420

https://www.nordicsemi.com/products/nrf9160
https://www.analog.com/en/products/adxl355.html
https://www.analog.com/en/products/adxl355.html
https://www.analog.com/en/products/adt7420.html#product-overview
https://www.analog.com/en/products/adt7420.html#product-overview

GETTING THE BEST OF ALL WORLDS WITH ZEPHYR RTOS 5

Two important considerations when selecting an
accelerometer for machine condition monitoring is
bandwidth and noise spectral density. The majority
of MEMS accelerometers used for orientation and
motion control are optimized for low frequency / DC
operation but exhibit significant spectral noise in the
regions of interest for structural vibration analysis.
The ADXL355 operates in the sweet spot of structural
acoustics with a 2KHz usable bandwidth and 22ug/
√Hz noise spectral density.

https://www.analog.com/en/technical-articles/mems-
accelerometers-for-condition-monitoring.html

Noise spectral density is an important and often
overlooked metric when selecting an acoustic sensor.
Often the magnitude of vibration of interest is extremely
small. Acoustic analysis for machine health and trending
is performed in the frequency domain. A power spectral
density computation is often the best choice for
understanding energy in a vibrating system. The low
noise spectral density properties of the ADXL355
combined with processing gain of a Fourier transform
based algorithm means one can resolve the smallest
of characteristics in a vibration system.

MachineMailbox Vibration Sensor Interface
For the MachineMailbox design, the ADXL355 was
connected to the nRF9160 via its SPI interface. The
ADXL355 implements a sigma-delta ADC inside
of the device package. Streaming vibration data is
converted and placed in a FIFO which can be read
via SPI transactions.

FIGURE 3. THE ADXL355 FUNCTIONAL INTERFACE
[SOURCE : HTTPS://WWW.ANALOG.COM/MEDIA/EN/TECHNICAL-
DOCUMENTATION/DATA-SHEETS/ADXL354_355.PDF]

An important point to consider is that once the data
stream is started, measurements are pumped into the
FIFO continuously. The FIFO is 96 words deep, so it is
important to read out data fast enough so there are no
discontinuities in the data. The MachineMailbox used
the ADXL355 with a 4KHz output data rate (ODR). New
sample data is ready every 250uS.

It would be possible to continuously poll the FIFO over
the SPI bus. However, this approach is inefficient in
terms of CPU activity and energy usage. The DRDY
line can be used to efficiently trigger read operations.
Acquiring a large capture buffer, say 16384 samples, can
be done completely in the background with minimum
CPU intervention. With 4KHz ODR, SPI transactions need
to occur within the 250uS sample period.

FIGURE 4. ADXL355 DRDY –> SPI DATA READ

https://www.analog.com/en/technical-articles/mems-accelerometers-for-condition-monitoring.html
https://www.analog.com/en/technical-articles/mems-accelerometers-for-condition-monitoring.html
https://www.beis.de/Elektronik/DeltaSigma/DeltaSigma.html
https://www.analog.com/media/en/technical-documentation/data-sheets/adxl354_355.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/adxl354_355.pdf

GETTING THE BEST OF ALL WORLDS WITH ZEPHYR RTOS 6

With the nRF9160, we can use a combination of GPIO
interrupts and SPI DMA to achieve data capture in a
background operation while the CPU spends most of
its time sleeping. This approach also frees up time for
the code to be accessing the ADT7420 temperature
sensor. The ADT7420 is accessed via an I2C connection.
In the AD7420 “Normal” operating mode, temperature
measurements are ready every 240mS. Reads of the

ADT7420 can be overlapped with the SPI transactions
to ensure the CPU is minimally involved and can be put
to sleep when idle. In the MachineMailbox firmware,
the ADT7420 is read at a nominal 4Hz sample rate
while the ADXL is read at a 4KHz sample rate. Both
operations are done with minimal CPU interaction to
maximize sleep time.

Direct Peripheral Access Approach
Zephyr has a common driver API for the most common
access patterns to typical microcontroller I/O (UART,
SPI, I2C, etc.). The APIs enable rapid development and
portability across different SOCs. There are use cases
however that are not covered by the existing driver
models. Microcontroller peripherals can often be
interlinked in novel ways to achieve system requirements
such as latency or power consumption. In many cases
I choose a microcontroller because a peripheral set is
unique to the device. It is not uncommon to require
specific features that are not handled in generic device
models as they are specific to a SOC or device package.
Zephyr allows direct access hardware for these use
cases so users can get the benefits of the common
driver models as well as being able to make use of SOC
specific features. This flexibility can simplify development
as SOC specific features can be used while still being
able to get benefits from other Zephyr services. Develo-
pers can choose which features best benefit their
project requirements. In the case of the MachineMailbox
design, being able to choreograph peripherals directly

translated to improved energy consumption. This
improvement enabled for a smaller, lower cost battery
and improved mechanical packaging. I was simultane-
ously able to make use of the high-level Zephyr services
such as the networking stack and device settings API
to be able to focus on the differentiating features of
the product.

The SPI (called SPIM) and I2C (called TWIM) peripherals
in the NRF9160 are simple to use via direct register
access. They have been designed to handle the most
common access patterns. The SPIM module has
“EasyDMA’’ functionality. EasyDMA enables simple
configuration of a single DMA transfer to/from a SPI
peripheral. I have found that the number of lines of
code to directly program Nordic EasyDMA peripherals
is *less* than using a high level driver API.

For this application, we need to trigger a 10-byte
SPI operation whenever the ADXL355 flags new data
is ready.

GETTING THE BEST OF ALL WORLDS WITH ZEPHYR RTOS 7

FIGURE 5. NRF9160 SPIM W/ EASYDMA [SOURCE : NRF9160 PRODUCTION SPECIFICATION : HTTPS://INFOCENTER.NORDICSEMI.COM/]

https://d.docs.live.net/479669c96501f956/Content/Zephyr%20Blogs/NRF9160%20-%20ACS/NRF9160%20Production%20Specification%20:%20https:/infocenter.nordicsemi.com/

GETTING THE BEST OF ALL WORLDS WITH ZEPHYR RTOS 8

The ADXL355 use case requires smaller transactions
to be triggered from an external pin. We can use the
NRF GPIOTE module to trigger an interrupt on the
rising edge of DRDY. The SPI transmit buffer is fixed
in length. It contains control/address bytes that do
not change between samples simplifying IRQ handling
and DMA restart.

Note: The NRF9160 does have a specialized Distributed
Programmable peripheral Interface (DPPI) mechanism
that can link events between peripherals to reduce
interrupt handling. However, I specifically did not use
it as I needed to perform some ancillary operations
when new sample data is ready and wanted to show a
direct IRQ example in Zephyr.

In the MachineMailbox application, the capture buffer
for vibration data is 16384 samples in length. The
process for capturing a vibration generally followed
these steps:

1. Receive GPIOTE IRQ triggered by the rising edge of
ADXL355 DRDY.

2. Format / store data from the last SPI DMA transfer,
except on the 1st interrupt

3. Assert the ADXL355 Chip Select

4. Start the next SPIM EasyDMA transfer if the
capture buffer is not full.

5. Use SPIM ENDRX IRQ to de-assert CS and flag that
capture is complete if the capture buffer is full.

Graphically we can show this interaction as:

FIGURE 6. GPIOTE, SPIM
DMA AND ADXL355
DRDY INTERACTION

In the bare metal context, stitching this behavior
together is straightforward. Zephyr allows users
to directly attach custom IRQ handlers with little
added latency.

Step 1: Enable Zero Latency IRQs

In the Zephyr application prj.conf, zero latency IRQs
are enabled with a single Kconfig setting

Step 2: Mark your interrupt

handler as a Direct IRQ

In the MachineMailbox application, I used direct IRQ
handling for the SPIM2 and GPIOTE peripherals.

The ISR_DIRECT_DELCARE macro will add platform
specific tasks before and after your routine so it can
“plug in”. The nRF9160 uses a Cortex M, so you can
see what this macro does in the file

arch/include/arm/aarch32/irq.h

I always inspect these low-level macros to know
exactly what is going on.

GETTING THE BEST OF ALL WORLDS WITH ZEPHYR RTOS 9

You can poke around in the platform irq.h to inspect
the macros wrapped around your IRQ handler. In the
case of the Cortex-M, the wrapper is thin and resolves
to very little additional code. It is possible to 100%
examine what is added to understand the implications
on real-time performance.

Step 3: Link your IRQ handler

to the Vector Table

The IRQ_DIRECT_CONNECT is used to attach your
specific callback function to an IRQ index. This macro
will implement any platform specific behaviors to get
your function pointer in the IRQ vector table.

The 1st argument is the platform specific IRQ number.
I pulled this from NRF9160.h in modules\hal\
nordic\nrfx\mdk

It is also possible to pull the IRQ index from the device
tree. As an example, I connected the GPIOTE IRQ
handler using the IRQ index from the device tree.

You can find more information about direct
connected IRQs in the Zephyr documentation:

https://docs.zephyrproject.org/apidoc/latest/
group__isr__apis.html

If you want more examples of how to use direct IRQs,
you can read through the source code of various
peripheral drivers for a specific microcontroller.

Once I put all the IRQ & DMA logic together, I capture
the real-world timing with a logic analyzer.

FIGURE 7. DIRECT IRQ TIMING MEASUREMENTS USING A SALEAE LOGIC PRO 8

https://docs.zephyrproject.org/apidoc/latest/group__isr__apis.html
https://docs.zephyrproject.org/apidoc/latest/group__isr__apis.html

GETTING THE BEST OF ALL WORLDS WITH ZEPHYR RTOS 10

With the 1st implementation, I measured an approximate 2uS latency between assertion of DRDY and the
assertion of CS. The IRQ handler had to perform some housekeeping and buffer management. When I consider
the 64-MHz nRF9160 clock rate, flash execution and the assembly code generated by the compiler (from the
direct IRQ wrapper and my C code) this latency could be accounted for. With time critical IRQ code, it is a
good idea to inspect what the compiler generates. I like to peek at the time critical code sections to see that
everything is in order.

FIGURE 8. DIRECT IRQ ASSEMBLY CODE

GETTING THE BEST OF ALL WORLDS WITH ZEPHYR RTOS 11

The 1st implementation was well within the “good enough” margin to meet my real-time deadlines. Zooming out,
I could see that this implementation left quite a bit of idle time for the CPU to remain inactive to conserve power.

FIGURE 9. REMAINING CPU IDLE TIME IN BETWEEN VIBRATION DATA SAMPLES

While the SPIM/GPIOTE code was running in back-
ground IRQ handlers to capture a four second vibration
data buffer, I could perform bare metal access to the
I2C peripheral) to acquire temperature sensor data.

Accessing peripheral registers directly is as simple as
including the NRF9160 headers:

You can then access device registers the same as any
other bare metal application. For example, setting or
clearing an IO pin is as simple as:

This approach makes IO access both fast and simple.
The trade-off of this approach vs the Zephyr device
driver model is application portability. However, given
the specialized nature of this application and the
nRF9160 SIP, this was an easy trade to make.

GETTING THE BEST OF ALL WORLDS WITH ZEPHYR RTOS 12

The MachineMailbox DSP and Data Processing Approach
Many acoustic machine monitoring applications boil
down to analyzing data recorded from rotating
machinery and connecting physical structures. The
measured time signal consists of cyclical behaviors
combined with a relatively stationary background
noise. In many applications, the cyclical behavior you
are looking for can be small in magnitude in relation
to other stochastic elements in the signal. The
background “noise” is typically stationary which is a
fancy way to say the statistics of the noise don’t change
significantly over the timescale you are looking at.

Frequency domain processing is a highly efficient
method for separating the different components in
complex acoustic data. The workhouse of frequency
domain analysis in acoustic machine monitoring is
a power spectrum estimation.

https://en.wikipedia.org/wiki/Spectral_density

The simplest explanation of the power spectrum
output is a set of magnitude squared values (V2,
g2) the signal normalized to some spectral width
(commonly 1Hz). A power spectrum can give one
an estimate of where the energy of signal if located
in the frequency domain. This is helpful when
analyzing signals which are known to have cyclical
characteristics in the presence of other random
processes. The power spectrum is mathematically
defined for infinitely long, continuous signals.
However, we exist in the real world of finite sample
data. A common approach to estimating a power
spectrum of discrete data is via Welch’s method.

FIGURE 10. WELCH’S METHOD FOR COMPUTING POWER SPECTRA. [SOURCE HTTPS://CCRMA.STANFORD.EDU/~JOS/SASP/WELCH_S_METHOD.HTML]

https://en.wikipedia.org/wiki/Spectral_density
https://ccrma.stanford.edu/~jos/sasp/Welch_s_Method.html
https://ccrma.stanford.edu/~jos/sasp/Welch_s_Method.html

GETTING THE BEST OF ALL WORLDS WITH ZEPHYR RTOS 13

DSP code can look obtuse from the purely
mathematical expression. However, it is relatively
simple to show the algorithm graphically.

FIGURE 11. GRAPHICAL REPRESENTATION OF AN EMBEDDED IMPLEMENTATION
OF WELCH’S METHOD W/ CMSIS DSP ON THE NRF9160

Starting with a large capture buffer, you take overlap -
ping slices of data. Each slice is multiplied by a “window”
function. This product fed to an FFT. The magnitude
squared value of the FFT result is computed and then
Averaged. The result is a set of data that represents
the power in a range frequency bin. It is common to
normalize the power in each bin to a 1Hz bin width.

Writing embedded code to estimate a power spectrum
on time-series data requires a Fast Fourier Transform
(FFT). The open-source ARM CMSIS DSP libraries are
baked into Zephyr. You can enable specific features in
the application proj.conf file.

CMSIS DSP is structured such that you can enable
only the bits you want. In the case of the FFT
implementation, you can enable only the lengths that
you plan on using, saving flash memory used by the
twiddle lookup tables, etc. My implementation of a
power spectrum estimation used 2048 point FFTs.

Once enabled in the proj.conf file, using CMSIS DSP
is straightforward. You need to allocate an instance of
the FFT struct:

Initialize it:

and then use it!

This is an example of the floating-point version of the
CMSIS DSP FFT. CMSIS DSP also supports fixed point
versions for 16-bit and 32-bit data types. The Cortex
M4F core in the nRF9160 has hardware floating point
capabilities. Several years ago, I did a comparison study
of the CMSIS DSP FFT performance across the different
input sizes and data types. In terms of speed the
floating-point implementation is faster than the 32-bit
fixed point. The 16-bit version is the quickest as the
compiler can make use of some 16-bit SIMD instructions
that efficiently compute the FFT butterflies. However,
make sure to read the CMSIS DSP documentation if
you use the fixed point versions as there are details
about the integer scaling through the FFT pipeline that
must be taken into consideration.

https://en.wikipedia.org/wiki/Window_function
https://en.wikipedia.org/wiki/Window_function
https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://github.com/ARM-software/CMSIS-DSP
https://arm-software.github.io/CMSIS_5/DSP/html/group__RealFFT.html

GETTING THE BEST OF ALL WORLDS WITH ZEPHYR RTOS 14

FIGURE 12. CMSIS DSP FFT COMPARISON [SOURCE: HTTPS://GITHUB.COM/EHUGHES/ESC-M4]

For the MachineMailbox application, processed data
was transmitted to a backend using a secure, stateless
protocol over UDP. Sending frequency domain vibration
data to a cloud backend can be challenging if one
does not set reasonable boundaries on the size of
the data. Since this is a low bandwidth cellular CAT-M
application, it was important to send enough data to
enable machine monitoring algorithms in the cloud
backend while keeping an eye on the cellular data costs.
It was also beneficial for a single vibration spectrum
to fit into one Ethernet V2 MTU of 1500 bytes, so the
data set did not have to be split over multiple frames.

The output of the power spectrum estimation can
yield a wide dynamic range through the FFT and
averaging process. For the purposes of processing
frequency domain data, we can use a priori knowledge
of the measurement physics to compress the data a bit.

The unit of the acceleration power spectrum is g2 over
the width of the frequency bin. Given the squared
nature of the magnitude, we can transform bins of
data into the log domain:

10 log(Pn)

This computation gives us an acceleration value in
dB scaling (dBg). We can round and store as a signed
8-bit integer. This process will yield a possible power
range of -128dBg to +127dBg with 1dBg steps. This is
an incredibly wide dynamic range while being able to
resolve nearly imperceptible acceleration in a frequency
domain bin (-128dBg is *very* small).

From the perspective of machine monitoring / anomaly
detection, a 1dB step is a good tradeoff for resolution
vs data compression. I personally have never observed
any real-world anomaly detection models for rugged/
industrial processes that required triggers less than
1dBg. It is also my opinion that log scaled power
spectrum data is one of the most efficient data sources
for neural net based processing. Physics-informed, pre-
processed data can greatly simplify both the training
and real-time crunching of anomaly detection models.

https://github.com/ehughes/ESC-M4

GETTING THE BEST OF ALL WORLDS WITH ZEPHYR RTOS 15

Circuit Current Measurements for Data Acquisition/Processing
Once the data capture and DSP pieces were functional, I measured the total current of the MachineMailbox
circuit assembly. This data was fed into a power consumption model to make assessments of battery life. I
used a Joulescope DC energy analyzer to monitor current consumption to profile the system.

FIGURE 13. POWER PROFILE OF THE FIRST IMPLEMENTATION OF THE VIBRATION DATA CAPTURE AND DSP

Once I got the initial pipeline working, I could more
easily identify where I should be focusing time to
optimize. For example, to improve battery life, I could
choose to overlap some of the power spectrum
computations with the data capture. Since the power
spectrum requires fixed size slices of data, the FFT
and averaging could be started as soon as the 1st slice
is available. Because we are using highly tuned
interrupt-based data capture, it is possible to get a lot
of work completed in an efficient manner and get the
NRF9160 back to sleep quickly.

In the MachineMailbox use case, I found that most of
the optimization needed to be directly at queueing up
vibration spectrums to minimize the number of
transmits to the cloud backend. Even when taking CAT-M
PSM states into consideration, there was a delicate
balance of how often to measure data and how often
to transmit to achieve multi-year battery life.

https://www.joulescope.com/

GETTING THE BEST OF ALL WORLDS WITH ZEPHYR RTOS 16

Conclusion
The combination of direct IRQ , multi-peripheral interface combined with embedded DSP
and high-level Zephyr network APIs enabled me to get pretty vibration / temperature
pictures such as this:

FIGURE 14. PROCESSED VIBRATION AND TEMPERATURE DATA FROM THE MACHINEMAILBOX

The vibration power spectrums can accumulate in the backend over time to be stacked to
form 2D images. It is easy to see where AI / machine learning can come in to extract trends
and patterns.

Using Zephyr enabled me to get the best of all worlds. I could operate as close to the “metal”
as I wanted while getting all the benefits of the build system, high level RTOS APIs, network
drivers and common system functions such logging, shells and flash settings. The result for the
MachineMailbox was a vibration sensing system that could be easily installed and deliver edge
processed data securely to a cloud backend via the cellular networks. All of this while achieving
multi-year battery life in a real-world acoustic machine monitoring application.

	Battery Powered Acoustic Machine Condition Monitoring
	MachineMailbox Vibration Sensor Interface
	Direct Peripheral Access Approach
	Step 1: Enable Zero Latency IRQs
	Step 2: Mark your interrupt handler as a Direct IRQ
	Step 3: Link your IRQ handler to the Vector Table
	The MachineMailbox DSP and Data Processing Approach
	Circuit Current Measurements for Data Acquisition/Processing
	Conclusion

